H.1.1 Custom-designed microprocessor systems BVVx

Standard industrial microprocessors in custom designed system architecture (1stgeneration):

The concept was to grab video signals in small ‘windows’ (32 x 32 pixels) from those parts of the image sequence only where interesting features of the objects to be found could be expected. This, of course, required predictions for the motion process observed including the perspective mapping model for measurements.

With increasing computing power per processor (an order of magnitude every 4 to 5 years) and experience in real-time vision according to the “4-D approach”, two generations of BVV-systems have been used by our group:

  • The BVV1 with 8-bit processors Intel 8085 for and

A.2 Satellite model plant;

Video 05 SatelliteModelPlant VisualDocking 1987

  • The BVV2 with 16- to 32-bit processors Intel 80x86 for road- and air vehicle guidance; this one is sketched below.




  • Direct correspondence between subtasks and hardware components,

  • Two sets of parallel processors (PP, Intel 8086 16-bit) grabbed the pixels in dynamically locatable windows of size 32 x 32 pixels [Graefe 1984];

  • windows were placed with the center at the position where edge features had been found last time.

  • Two 16 - (32-) bit general purpose processors (GPP) for object state estimation by prediction error feedback.

  • They sent their results to the host and to gaze control (ZPP):

  • The host-PC was used as human interface and for deriving and initiating the control output which was implemented by special microprocessors near the actuators (not shown).

  • a microprocessor for controlling gaze direction of the two-axis pointing platform (ZPP).



References

Meissner HG (1982). Steuerung dynamischer Systeme aufgrund bildhafter Informationen. Dissertation, UniBwM / LRT.

Dickmanns ED, Zapp A, Otto KD (1984). Ein Simulationskreis zur Entwicklung einer automatischen Fahrzeugführung mit bildhaften und inertialen Signalen. In Breitenecker, et al. (ed): Simulationstechnik, Informatik-Fachberichte 85, Springer, pp 554-558

Graefe V (1984): Two Multi-Processor Systems for Low Level Real-Time Vision. In: Brady JM, Gerhard LA, Davidson HF (eds) (1984). Robotics and Artificial Intelligence. Springer–Verlag: 301–307

Dickmanns ED, Zapp A (1985). Guiding Land Vehicles Along Roadways by Computer Vision. Proc. Congres Automatique 1985, AFCET, Toulouse, pp 233-244

Dickmanns ED, Graefe V (1988). (a) Dynamic monocular machine vision. Journal of Machine Vision and Application, Springer International 1:223-240. (b) Applications of dynamic monocular machine vision. (ibid): 241–261.

Zapp A (1988). Automatische Straßenfahrzeugführung durch Rechnersehen, Dissertation, UniBwM / LRT.

Mysliwetz B (1990). Parallelrechner-basierte Bildfolgen-Interpretation zur autonomen Fahrzeugsteuerung. Diss., UniBwM / LRT