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Abstract: The integrated spatio-temporal approach to real-time machine vision, which has allowed
outstanding performance with moderate computing power, is extended to obstacle recognition and
relative spatial state estimation using monocular vision. A modular vision system architecture is dis-
cussed centering around features and objects. Experimental results with VaMoRs, a 5-ton test vehicle
are given. Stopping in front of obstacles of at least 0.5 m* cross section has been demonstrated on un-
marked two-lane roads at velocities up to 40 km/h.

1. Introduction

Fully autonomous visual road vehicle guidance has received considerable attention since DARPA
started its "Autonomous Land Vehicle (ALV)’ project in 1983 as a demonstrator in its program *On

Strategic Computing’, and especially in Europe since the Eureka-project Prometheus was initiated
in 1986.

In Japan, Tsugawa e.a. [1,2] had been working on this problem since the late 70ies. At the authors’
iastitution, simulation studies started in 1978 [3]; the test vehicle to become 'VaMoRs’ was develo-
ped from 1984 to 86. The vision system hardware had been under development from the beginning
of this decade [4]. Contrary to the Al-oriented approaches in the DARPA projects [5,6,7], our ap-
proach has been control-oriented, exploiting the well developed linear system theory for recursive

. State estimation.

The superiority of this approach, at least for well structured scenes like roads, has become apparent
over the last three years. A survey on this method is given in [4]; speeds close to 100 km/h on a freeway
and up to 60 km/h on an unmarked two-lane country road have been demonstrated repeatedly.

In the next section, a brief review of this 4D-approach is given; then, the method is extended for
dealing with obstacles, leading to a modular processing structure to be discussed in the following

section. After an explication of the signal flow in real-time operation, results with VaMoRs will be
discussed.
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2. The4D-integrated approach

Figure 1 summarizes the model based spatio-temporal approach to real-time vision: Parallel to the
real world (upper left rectangle) a ’mental’ world representation is maintained in the interpretation
process (upper right), which is manipulated by prediction error feedback in such a way as to duplica-

te (symbolically) the real world with respect to those objects of highest significance for the task at
hand.

Single objects are represented as units existing in 3D-space and time. The spatial shape is impover-
ished to a distribution of visual features relative to some centroid. Motion, i.e. time, is idealised to
translation of and rotation around the center of gravity (¢.g.). Temporally fixed sampling of the scene
by a TV-camera with period T is assumed. We confine ourselves at present to rigid objects. The mo-
tion capabilities of objects, which are constraints characterizing the object, are represented by generic
models via difference equations with discretization period T, the socalled dynamical model.
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Figure 1: Basic scheme for 4D-image sequence understanding by prediction error minimization

Given a complete state description at time t, the state at the next sampling time t + T can be predic-
ted exploiting the dynamical model. For the features to be tracked, their position and orientation are
determined using the simple forward perspective projection (lower center right in fig, 1). At the same
time the Jacobian matrix of the feature positions in the image with respect to the state variable com-
ponents in 3D-space are determined from the model.

Following Kalman’s idea of a recursive least squares measurement data fit using a generic model [9],
- anumerically very efficient estimation of the full 3D-motion is obtained, bypassing the inversion of
the perspective mapping. For details see [4].

Figure 2 shows the system architecture realising this approach for road vehicle guidance: In the upper
right, the scene as imaged by one wide angle- and one tele-camera is shown. The cameras are mounted
together on a two-axis pan and tilt platform (ZP, top center). Their signals are digitized and fed onto
a video-bus in the image sequence multi-processor system BVYV (left). Parallel processors (PP;) for
feature extraction grab picture elements (pel) belonging to a rectangular sub-area (socalled windows)
and determine the position of linear edge elements with a preset direction by simplified correlation
[4]. The window shape, the direction parameter and the search path may be controlled by the higher
interpretation levels; in the image, several such windows (1 throngh 9) are shown.

Inaninitialization phase, usingintelligent searchstrategies, feature groupings belonging to one object
have to be detected. This is achieved by the object processor GPP; (dashed and dotted curves around
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several PP and one GPP, fig. 2 left) having knowledge about how spatial objects look in the image
under certain aspect conditions. The GPP also contains the dynamical model for introducing the tem-
poral constraints into the interpretation process.

Ow ——Yg (pix() 258

-

Vid TV
20
AlDre rate Tele
A/Dysq Liwide
zpP <
- pton:?orr?n
P |
[nertial | for active
;sensors,= quze control
}Vehic{e- 1 (e.g.anchacing)
1body ! :
l__g__l 258 ?q 24 (optional)
.
: central processing system longitud, | lateral -engine
A ; ; situation assessment «ehicle_control .mmﬁ:M
g 2 N :;{ se = World 2 — input foutput <=  posilicn
AR PP /T T~ behaviour ¢controller brak
e . setection and : R e
! GPPal! monitoring data logging hydr. press.
! ) man-machine . odometer
PPa S interface + vehicle
BRI xSl speed
; convent.
BVV2 Onboard multiprocessor system sensors

Figure 2: System architecture for the antomatic control of road vehicles by visual feedback

In the tracking phase, each PP; locks onto its feature set and communicates the feature data to the
GPP for recursive state update. Usually, two to three times the number of features minimally requi-
red for object tracking are evaluated for achieving robust motion recognition. PP’s are Intel 8086 or
286 single board computers, while GPP’s are 386 ones. '

The GPP delivers the best estimate for the object state via the communication processor SP to the
main computer (lower center, central processing system). Here the situation is assessed, integrating
data from other sensors (lower right); then the control for the own vehicle is determined. Thisis done
~ at two levels. For a given situation, a state-variable-feedback-law is applied yielding fast reflexlike

behavioral competences (10 to 20 Hz update rate). If a situation is changing, e.g. from lane following
to lane changing as a mission element, more complex control sequences have to be applied. The si-
tuation assessment rate may be slower than the normal control rate.

Lane following with speed adapted to road curvature has been demonstrated for the speed range of
VaMoRs (up to 100 km/h); also the lane changing capability has been proven.

3. Extension for dealing with obstacles

The general scheme implemented for road curvature detection and for vehicle ego-state estimation
relative to the road has been extended in 1988/89 to obstacle handling. This is done in three steps:
L. detection of obstacle candidates, 2. recognition of object size and location in the image plane and
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3. estimation of the spatial state relative to the ego-vehicle and of the physical dimensions of the ob-
stacle.

Steps 1 and 2 have been treated in [10] to some extend; here step 3 is detailed. It deals with a feature
set determined from windows 7 to 9 in the telecamera image in fig. 2. Vertical and horizontal feature
pairs, centering each other crosswise, are taken as input to the object processor. If these features
belong to the same object they should move in conjunction, except for changes in the aspect condi-
tions which induce relative changes between the feature positions.

31 Geometry model

In fig. 3 the nomenclature used is given. Besides the object dimension, also the left and right road
boundaries at the position of the lower end of the
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Figure 4 shows the perspective mapping of significant feature positions onto the image plane ina top
down (a) and a side view (b). Only the backplane of the object, which is considered to have a shape
close to a parallelepiped (rectangular box), is depicted.
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Figure 4: Measurement- and relative state variables camera to object
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Assuming a planar road surface and small angles (cos = 1, sine ~ argument), all mapping condi-
tions are simple and need not be detailed here. Sums and differences of feature positions yield the
position and size information looked for.

3.2 The dynamical model for relative state estimation

Of prime interest are the range r and the range rate r to the obstacle; the former is the integral of the
latter. Then, the lateral motion of the object relative to the road voR is important for deriving the
proper reaction for the own vehicle. Since the control inputs to the other object are not known in

general, they are modeled by stochastic disturbance variables s;, This yields the dynamical model (v
= speed along the road)

I  =vo-V+5§ (Index O = Object) ¢))
VO =80 (2)
~ YOR = VOR (Index R = Road) (3)
VOR = SyOR. (4)

In addition, for determining the obstacle size and the viewing direction relative to its center, the fol-
lowing four state variables are added

Ho =sHo )
Bo =sBo (6)
YKO = SYKO (Index K = camera) (7
6KO = SGKO (®)

where again the sj are assumed to be unknown Gaussian random noise. In shorthand vector notation
these eqs are written in the form

x(1) = fx(t), ut), s(t)] ©
with the state variables
x = (r,v0, KO, 9K0, Bo, HO, YOR, VOR) . (10)

After transformation into the discrete state transition form, standard methods for state estimation
are applied.

33 The estimation process

Figure 5 left shows the window arrangement set up for relative obstacle state determination. The in-
itialization is performed by steps 1 and 2 mentioned above; then, the object processor GPP2 com-
putes starting values for the spatio-temporal iteration based on the known road width determined by
GPP1 in the near range (right half). Note that the range to the obstacle can also be derived from the
vertical position of the lower feature where the obstacle touches the ground.
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The estimation cycle on GPP2, an 80386 microprocessor, runs at 25 Hz (40 ms) while the feature ex-
traction and -tracking runs at video rate (50 Hz) on 8086’s. The initial transient takes 10 to 20 cycles.

In a prediction step, the expected position of features for the next measurement is computed by ap-
plying forward perspective projection to the object as *imagined’ by the interpretation process. Only
those feature position candidates delivered by the PP’s which are close to these values, are accepted;

others are rejected as outliers. This contributes considerably to stabilizing the interpretation in noisy
natural environments.

Due to the integral-relationships in eqgs (11 and (3) also the speed components can be estimated in a
consistent manner using only position data over time.
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Figure 5: Modular processing structure for visual road vehicle guidance

4. Modular processing structure

In figure 5 the modular processing structure resulting naturally in this object-oriented 4D-approach
is emphasized. There are four processing layers shown: the pel-level (bottom), where 2D-spatial data

- structures (intensity images and subimages) have to be handled. Then, at the PP-level, edge-element,
corner- and adjacent intensity-features are extracted with respect to 2D-position and orientation, still
missing any relation to 3D-space or time. Only in the third layer, implementing object interpretations
on the GPP, spatial and temporal constraints are introduced for associating objects with groupings
of features and their relative change over time. In our case, objects are the road, the ego-vehicle and
obstacles on the road, right now just one; it is easily seen, how this approach can be extended to mui-
tiple objects by adding more groups of processors.

It may be favourable for the initialization phase to insert an additional 2D-object layer between layers
2 and 3 as given here; this is still under discussion [11]. Also layer 4 for vehicle guidance as im-
plemented now, will have to be expanded in the future in order to be able to deal with more complex
tasks and situations. Table 1 shows the structure under development. In addition to the multiproces-
sor system for image sequence processing and object state estimation (BVVx) there will be a second
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one (termed MPS in colurnn 2) for situation assessment, relative goal state evaluation (inclusive plan-
ning) and control decisions as well as implementation.

acitvity level Processoxs operation result
compute expectations

control level HPS control viewing direction l -> action
¥ apply vehicle control l
-l
< A
: I 1
o
K| task level HPS relative goal state <~ |=> planning,
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2
g B i 1}
b4 object level HPS -> situvation assessment <~ |=> situation <
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g 1 f f
pi
- # | feature level GPP —> featura aggregation —> objects in <~
7;': space/tine
L1
" T T 1
o
& | pel level PP => feature extraction => features in <—
image plane

Table 1: Modular processing structure for complex tasks

5.

Signal flow in real-time operation

In order to better visualize the operational interconnections between the subsytems, fig. 6 shows a
block diagram of the system for dynamic vision; In the lower center the real world and the feature
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extraction by the BVV is depicted. Initially, via the horizontal data path to the right, object hypothe-
ses have to be generated through feature aggregation (right column). The models to be instantiated
have at least three essential ingredients: a dynamical model for temporal behavior, a 3D-shape model
and the aspect conditions. Now the recursive estimation loop can be started which is shown in the
center of the image. The shaded areas correspond to the well known control engineering methods

(Kalman filter and derivatives [12]) while the geometric reasoning block is a new extension for image
sequence processing.

The prediction errors (arrow at right, showing upward) are used for additional purposes besides the
computations of the innovation. Since the scene is time varying and new features belonging to yet
unknown objects may occur, a steady monitoring has to be done in order to detect new objects or to
adapt parameters for generically known objects. All these parts in the upper and left outer layer of
fig. 6 have to be further developed in the future. This may be done by a hybrid approach exploiting
fitting parts from engineering and Artificial Intelligence (Al) methods. The left column is intended
for learning good control strategies from autonomous experimenting in similar situations and eva-
luation of the results with respect to goal functions (upper left).

Figure 7 shows a simplified block diagram of this approach which is oriented towards a display which
Rasmussen used for discussing human behavorial modes when dealing with the real world; the three
layers are the same, details of implementation are different, of course, Qur approach yields a simple
means for switching control laws depending on the situation, thereby yielding flexible behavioral

competences for classes of tasks (lower center in fig. 7). For each active control law, fast reflex-like
behavior is achieved.
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Figure 7: Idealized layered system architecture for fast and flexible realization of behavioral modes

At present, our system is almost completely lacking the highest level. The development of the two
basic layers has progressed to a state, however, where the evolution of the upper one is the natural
next step. This can be based on the notion of objects existing in space and time as well as on knowled-
ge of their spatial shape and their temporal behavior.

6. Experimental results

The system described has been tested both in simulation with real image sequence processing hard-
ware (BVV 2) in the real-time loop and with two test vehicles in real scenes: our 5-ton van VaMoRs
and a 10-ton bus of the Daimler-Benz AG equipped with our vision system.
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6.1 Autonomous longitudinal control from rest

Figure 8 shows results of a test, where the autonomous vehicle initially stood still at a large distance
from the obstacle having about 5 m? cross-section (another bus).
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Figure 8: Autonomous approach of an obstacle to a preset distance (10 m)

The initial distance was estimated at 81 m. The task for the vehicle was to approach the obstacle to
a distance of 10 m as close as possible. At about 2s the vehicle starts moving (fig. 8c) and accelerates
to a speed of 5.7 m/s (= 20 km/h) achieved at 6 to 7 s; then speed is decreased by the longitudinal
controller depending on the distance to the obstacle. The precise control to the final stop is done at
alow speed (= 1 m/s) for about the last 3 meters (23 to 27 s). The range after stop has been measu-
red to be within about 5 % of the value specified.

Since the overall range difference estimated (r*(0) - r*(tf)) = 71'm differs by 5 m from the distance

travelled, measured by the odometer of the vehicle, the intial estimate r*(o) must have been4 to 5

m wrong (=~ 6 %). This error has been reduced to 1/5 at 18 s when the range had decreased to about

25 m. This is a typical behavior for monocular range estimation for known obstacle size, since the

angle subtended by the obstacle - and therewith the measurement accuracy - increases during the ap-
- proach; at 25 m range this angle is about 5 to 6°,

For stopping distance control this is an acceptable relationship since accuracy becomes better when
it is most needed (aearby).

6.2 Obstacle detection while driving

The three-stage obstacle detection, recognition and relative spatial state estimation process has been
tested with VaMoRs on an unmarked two-lane campus road at speeds up to 40 km/h with an obsta-
cle of about 0.5 m? cross-section (a trash can). The detection range was set to about 35 to 40 m. As
figure 9 shows, the range estimation started with r* = 33 m. The initial speed in this test was about
4 m/s. The filter, however, was started with an initial value of zero in order tg test the transient be-
havior (see curve vR in fig. 9b).
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It took about ten to fifteen videacycles, i.e. 0.2 to 0.3 seconds from detection for hypothesis verifica-

tion and set up of the obstacle-processor group until first results for the spatial interpretation became
available.

{Pell
160, e

1 7] IR L
146 : :
140 .".' ok
136 n? :

132 |
128 ey
§24 F RO ;
116 :
112

0 1 2 3 4 s 5 7 P
tisec)
a) measured (—) and estimated () feature positions over time

S -

Gt
70
60 :
50Oy
40
0|

?0 sseaep

10 : i

%9 7 7 3 % 5 ; 7 g 2l
tisec!

b) time histories of estimated state variables range r* m] , range rate vR/[O 3 mfs], obstacle height
Ho/[0.02/m), azimuth direction to obstacle yKk0/{0.1°), pitch angle to obstacle centroid 6ko/ [0.1°]

Figure 9: Relative state estimation to obstacle

During the shown test portion, range decreased from 33 to 16 m. The object height was estimated
very stable at 1.1 m. The pitch angle Ko increased in magnitude during the approach since the ele-
vation of the camera above the ground (1,8 m) was higher than the object centroid height. Apparent-
lya shght curve was steered since the azimuth angle yko shows a dip (of less than 1°). Speed estima-
tion in this run had been tuned to be rather sensitive as seen by the frequent oscillation, In the version

presently running, speed is taken from the tachometer and the absolute velocity of the obstacle is
being estimated.
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7. Conclusions

The 4D approach to real-time machine vision has been shown to be well suited for depth estimation
in monocular vision. Since image sequence evaluation is done with time explicitely represented in
the model underlying the recognition process, motion stereo is an inherent property of the approach.

Accuracies in the percent range have been demonstrated, becoming better the closer the obstacle is
approached.

The feature based approach is computationally very economic and leads to a processor architecture
oriented towards physical objects in a modular way. State of the art single board computers as MIMD
processing elements allow cycle times of 40 ms (25 Hz).
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