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Abstract
The ability to recognize intersections enables an au-
tonomous vehicle to navigate on road networks for per-
forming complex missions. The paper gives the geometry
model for intersections applied and their interaction with
active viewing direction control. Quality measures indi-
cate to performance monitoring processes the reliability of
the estimation results. The perception module is integrated
in the EMS-Vision system. Results from autonomous turn-
off maneuvers, conducted on unmarked campus roads are
discussed.
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1 Introduction
Recognizing and handling of intersections is a key abil-
ity for an autonomous agent in order to successfully nav-
igate on road networks. This has been initially investi-
gated at Universität der Bundeswehr München (UBM) by
N. Müller, see [1] and [2]. His approach was validated by
hardware in the loop simulation and autonomous turn-off
maneuvers on marked campus roads. Exploiting images
from two monochrome cameras, intersections were de-
tected and tracked utilizing an active pan-tilt head (TACC)
to direct the focus of attention. Building on these results,
vision based intersection navigation has been integrated in
the current Expectation-based Multi-focal Saccadic Vision
system (EMS-Vision), see [3], [4].

2 Integration in the perceptual framework
of EMS-Vision

Perception modules use sensor input to estimate state vari-
ables describing relative positions and geometry param-

eters for objects in 3D space and time. In the EMS-
framework, perception modules are implemented as pro-
cesses, each with areas of expertise. At startup, a pro-
cess announces via its process node in the knowledge base
which object classes it can handle; for an overview of
knowledge representation see [3]. An attention control
module assigns expected objects, e. g. roads and land-
marks, and detection areas, e.g. for vehicles ahead, to per-
ception experts. Obsolete objects are removed from the
task list of the perception module, for example after a land-
mark has left the field of view. For object control-flow see
[5].

Figure 1 shows the knowledge represented in the EMS-
system to perform a locomotion mission including a turn-
off. The right hand column shows the mission plan, de-
composed into mission elements, e. g. Follow Road
and Turn Left. For details on mission planning and
monitoring see [5] . Mission elements contain expected ob-
jects relevant for the current task. These objects are added
to the scene tree (second column), the central internal rep-
resentation for physical objects and their relative positions.
Poses are in their most general form described by six de-
grees of freedom (6DOF). The left two columns show the
software processes, here two perception modules, and the
processing nodes they are active on. The perception mod-
ules make use of the camera signals available on the nodes
they reside on. The transformation between the cameras
and the frame-grabber node (FG) is perspective projection
and some shift (in general). The FG nodes contain pointers
to the digitized video images and the information, on which
computer the stream is captured. All transformations in
the scene tree are described by homogeneous coordinate
transformations (HCT). The Ego node comprises the ego-
vehicle and its sub-objects; Distant Road and Local
Road nodes represent the road currently traveled on. Ad-
ditionally to the objects needed for the current mission el-
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Figure 1: EMS-Vision data bases: navigating turn-offs

ement, the scene tree may contain objects required by the
following elements. In the turn-off example the cross-road
nodes Connect Segment and Cross-road must be
detected while the Follow Road element is still active.

3 Generic Model for the Geometry of Inter-
sections

In this section an overview is given of the coordinate sys-
tems, which are used for describing the position of road
segments relative to the vehicle. Subsequently, the ge-
ometry model for road segments and intersections are ex-
plained. This leads to a description how intersections form
fixpoints for the road segment models.

3.1 Coordinate Systems
Building on the calling conventions introduced in [6], coor-
dinate systems for the cross-road, index “cr”, and the con-
necting segment, “cs” are added. In an ego-centered world
description the body fixed coordinate system of the vehicle
has its origin in the center of gravity (cg) with the x f and
z f axes lying in the plane of symmetry of the vehicle. The
“surface-oriented” coordinate system has its origin below
the cg and its xs-direction parallel to the local tangent of the
road skeleton line; its xs – ys plane is parallel to the local
road surface. It thus holds the yaw angle, ψ s cg, between
road and vehicle. The position of the cg relative to the road
is described by a lateral offset (yr s) from the “surface” co-
ordinate system. The “connect segment”, describing the in-
tersection of two road segments, has a longitudinal offset,
xcs r, to the road-base coordinate system. It decreases as
the vehicle approaches the intersection. The “cross road”
is linked to the “connect segment” by the turn-off angle
ψcr cs.
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Figure 2: Scene tree for road representation: Dynamic po-
sition parameters

The scene tree for this road network is given in figure 2.
Parts of the mapping geometry within the ego-vehicle are
shown on the right hand side, cg, TACC-base, TACC, an
example camera and a framegrabber, representing perspec-
tive mapping. The left hand side shows the road network
nodes with the surface oriented system, the actual road, the
connect segment and the cross-road. Dynamic variables in
this scene tree are, besides the relative position vehicle to
road, the TACC pan- and tilt-angles, ψt b, θt b.

3.2 Road Segment Geometry
The generic road model consists of a center-line and the
road width perpendicular to this curve. The center-line is
given by a horizontal clothoid, [7], (c 0h, c1h). Clothoids
are the trajectories wheeled vehicles follow, given constant
steer-rate at constant speed. Special cases are straight lines
(c0h = c1h = 0) and circular paths (c0h 6= 0 and c1h = 0).
Allowing a linear change of road width along the path (b 1)
results in a lookahead dependent formulation of the actual
width. This differential geometric description results in a
very compact parameterization, [c0h;c1h;b0;b1;L]T , with L



as the maximum lookahead range.

A birds-eye view of an example clothoidal band is given in
figure 3. Pr(l) denotes a point on the centerline, χ(l) the
respective heading angle.

Xr

�(l)

Yr

P (l)r

Figure 3: Road model with c0h = �0:015m�1, c1h =

0:0007m�2, b0 = 3:5m, b1 =�0:03 and L = 40m

Additionally for the near lookahead range, where segment
curvature is negligible, a “local road” model is available,
consisting of straight lines.

3.3 Connect Segment Geometry
The connecting segment is defined by the intersection of
two road segments, e.g. the own road and a cross-road. The
intercept point of the skeleton lines of the own road and the
cross-road is the origin of the connecting segment. Its x cs-
axis is oriented parallel to the own road, the zcs-axis per-
pendicular to the local surface and the ycs-axis completes
a right hand system. The geometry of the connecting seg-
ment is described by the road width of the two branching
segments, their relative positions, the turn-off angle ψ cr cs

and the inner radius of the curve rcr cs as geometry param-
eters. For an example intersection geometry see fig. 4.

Using the intersection geometry parameters as given
above, the distance of the end-point of the own road Pe cs

to the connecting segment is given by:
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which can easily be deduced from
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2
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where tan(β) is given by the joint hypotenuse of the two
right-angled triangles α and β and ψcr cs = α+β.

In equation 1, bcr and br denote the respective road width
and ψcr cs the turn-off angle. The coordinates of the end
point are dgr cs:
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Figure 4: Intersection geometry, with ψcr cs = �75Æ and
bcr � 2 �br

Similarly the base point of the forking road, Ps cs, is given
by:

Ps cs = jdgc csj �

2
4

cos(ψcr cs)

sin(ψcr cs)

0

3
5 (4)

A bounding box, centered around the origin of the con-
nect segment, is used as rough approximation for the in-
tersection’s geometry. Its size is given by 2 � dgr cs and
2 � (rcr cs +

br
2 ).

Commonly road segments extend beyond the lookahead
distance covered by the sensor system. Current informa-
tion updates can only be acquired about the portion within
this lookahead distance. This fact leads to a road represen-
tation moving with the vehicle cg. Intersections are a case
where the lookahead distance can reach beyond the length
of a road segment, e.g. at a T-junction. Besides the defi-
nite end of a road segment at a T-junction, the continuity
assumptions underlying a road description with a single set
of parameters can be violated at a crossing.

For these reasons intersections represent break points in
road geometry description. If the centerline of a road seg-
ment reaches into the area occupied by an intersection, the
lookahead distance has to be adjusted appropriately.

3.4 Fixation point
An approach to active viewing direction control is that
each object to be perceived specifies a fixation point in 3D.
Adding optimal viewing direction to the properties of an
object gives the perception expert the ability to dynami-
cally control viewing direction for performing his percep-
tion task.



If the vision system comprises multiple cameras, the de-
sired camera must be specified as well. The actual viewing
direction can then be computed by the “behaviour genera-
tion for gaze and attention” process in an optimal manner
for all perception tasks, see [8].

The fixation point for a road segment is determined depen-
dent on the distance this camera has to the origin of the
segment (dc r). The fixation point is given on the center-
line of the road at an arclength (l f p).

l f p =
L
2
�

8<
:

0 : dc r > dmax
dmax�dc r
dmax�dmin

: dmin < dc r < dmax

1 : dc r < dmin

(5)

With the parameters set to dmax = 35m and dmin = 1:5m.

4 The Vision System for Road and Intersec-
tion Detection and Tracking

The MARVEYE camera configuration (figure 5) consists
of up to four cameras. A monochrome pair of cameras
is equipped with wide-angle lenses, 4:8mm or 6mm. Their
optical axes lie in one plane and may diverge by an angle of
� 40Æ for a large field of view (> 100Æ) with a small over-
lapping stereo region, or be aligned in parallel allowing
full conventional stereo processing, see [9]. A 3-chip color
camera is centered between these two cameras and has a
pitch offset of 10Æ to the wide-angle cameras. This allows
to pitch the camera arrangement 17Æ towards the ground
plane and to have 10 % (3-chip) and 12 % (monochrome)
of the image above the horizon.
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Figure 5: MARVEYE camera configuration

The images from the wide-angle cameras are exploited to
update the parameters of a local road model. For a looka-
head distance of up to 15m a straight line approximation
for the road geometry is commonly sufficient. The yaw
angle ψs cg, and the horizontal offset, yr s, from the road
centerline are taken from this local representation, see fig.
2. The color camera is used for road curvature estimation
and cross-road detection.

Figure 6 shows three images taken at a single timestep from
the two wide-angle and the mild tele camera. The TACC

is panning� 5Æ to the left to facilitate detection of a cross-
road to make a left turn. The local road segment extends
13m from the vehicle cg. The cross-road is tracked at a
distance of 52m.

5 Measurement of performance quality
State variables describing relative positions and geometry
parameters represent one level of information for an in-
telligent autonomous agent. Additionally, the system re-
quires information on how secure the perception modules
are about the states supplied, see [8] for attention control
issues and [10] for requirements for locomotion. For state
estimation the well known technique of Extended Kalman
Filtering is applied. The quality of estimation for each state
is given by the variance, taken from the covariance matri-
ces P of the filters, see Biermann [11].

Besides this information about the state of the filter, reli-
ability information on the sensor input is required. This
indicator of sensor performance is dependent of the sensor
type. Measurement reliability can be static, e.g. noise level
for angular rate sensors, or dynamic, e.g. performance of
image processing techniques. Two key quality indicators
for model based image processing are the ratio of expected
to matched features and the sum of the absolute values of
the differences between expected feature positions in the
image and measured positions (residuals). With the index
of expected features i ranging from 1 : : :m and the index of
matched features j within [1;n] the matched feature ratio
is:

f eatrat =
n
m
� 1 (6)

Using the predicted feature position in 3-D camera-
coordinates Q�

( j) and projecting it onto the image plane
gives P�

( j). With the extracted position P( j), the average
residual is given by:

ressum =
1
n

n

∑
j=1

jP�( j)�P( j)j (7)

Low values of f eatrat (eq. 6) indicate poor image qual-
ity, unsuitable parameterization of feature extraction or
large differences between model assumptions and scene
observed. Large values of the residual sum (eq. 7) hint
at model errors in geometry or system dynamics or at mis-
matches between features.

6 Experimental results
Autonomous turn-off maneuvers were conducted with
the experimental vehicle VAMORS on unmarked campus
roads. The intersection recognition was fully integrated



Figure 6: Intersection in MARVEYE camera configuration

into the mission context, controlling the vehicle’s locomo-
tion and perception tasks. The viewing direction of the ac-
tive pan-tilt head was controlled dynamically by the gaze
control process, based on fixation points specified by each
object.
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Figure 7: Approaching a T-junction (from top to bottom):
a) estimated distance, b) lookahead for road and local-
road segments, c) fixation point on cross-road d) resulting
TACC pan-angle.

Figures 7 and 8 shows data plots while approaching a T-
junction. The top-most plot shows xcs r, the distance of the
connect segment to the own vehicle. The estimated value
decreases as the vehicle approaches the intersection. At
cycle 4025 mission monitoring removes all road objects
and reinserts a new own-road with an initial value for the
relative position taken from the last values for the cross-
road. The second row gives the lookahead, L max range for
the Own Road and the Local Road segments (dashed);
they are trimmed according to the rules given in section
3.3. The third and fourth subplot show the fixation point
as it moves along the centerline of the cross-road segment
and the resulting pan-angle of the gaze control platform,

ranging from �7Æ to �70Æ.

Figure 8 shows the quality measures for the same experi-
ment. In the initial phase of the approach, when the cross-
road is still too small in the image to be tracked robustly,
no estimation is conducted and the variance, depicted in
the second subplot from the top is not valid. During cross-
road tracking the variance decreases. In the final phase,
the position is updated by prediction only, resulting in a
cubic increase in variance. Image processing in the initial
phase is characterized by occasional total loss of matched
features and a high residual sum. In the tracking phase, the
matched feature ratio remains above 75%.
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Figure 8: Quality measures at a T-junction (from top to
bottom): a) estimated distance, b) distance variance c)
matched feature ratio, d) residual sum

Experiments for the detection of intersections have been
conducted using the mild-tele and the right wide-angle
camera of the MARVEYE configuration with conventional
stereo alignment of the wide-angle cameras. The top-most
row, labeled (a), in figure 9 shows the initial phase of the
approach, the left column contains images from the mild-
tele, the right column from the right wide-angle camera.
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Figure 9: Approaching an intersection, mild-tele camera
(left) and right wide-angle camera (right); (d) after turn-
off onto cross-road

Vertical search windows are applied at the expected posi-
tion of the cross-road in the image. The Local Road
segment is tracked in the wide-angle camera. The pan-tilt
head is panning � 5Æ to the left, facilitating cross-road de-
tection; approximately 2=3 of the image at the expected
cross-road position is devoted to the left of the own-road.
This focusing has little effect on road detection near by,
((b) & (c)). The shortening of the lookahead range can be
seen in the images of row (c), where no feature extraction
windows are positioned on the inner radius of the curve.
The last pair of images shows the new road being tracked
after the turn-off maneuver has been completed.

7 Conclusions
Building on previous work, recognition of intersections has
been integrated into the EMS-Vision framework currently

under developement at UBM. Intersections represent dis-
continuities for road segments, resulting in a locally fixed
discription of road segments at intersections. Active view-
ing direction control is achieved by dynamically specify-
ing fixation points. The aim of future work is to navigate
on unpaved road networks with intersections with multiple
branches.
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