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Abstract

A methed for interpreting high frequency image sSequences is presented that confines
image data processing to the last image of the seguence and yet = by using smoothing
integration-operations ~ allows to determine velocity components in space explicitly.
This is achieved by simultanecusly explaiting 3D-chiject and - motion models together

Wwith the laws of perspective projection.
in the world and of the (very flexible)

These integral models of the process cbserved
measurement process using vision are utilized

in the sense of modelbased feedback control theory (HKalman filter, observer), to
estimate the state variables in space and time directly. The concept has been tested
in three application areas: a planar docking maneuver between two 3ID-obiects,
autonomous road vehicle guidance and autonomous aircraft landing.

introduction

The usual way to process image sequences
teday is  characterized by picteorial
interpretation of single images and an
ensuing comparison of the position of
objects; from this the motion of objects
in space is reconstructed. This proce-
dure may be based in the historical
development of digital image processing
which began in the area of remcte sens-
ing taking temporally well separated
single images.

It is; however, well known from biology
and physiology, that pictorial wvision
and motion wvision -are two separate
developments, motion wision being the
phylegenetically elder cne. The psychol-
egist Yonas has shown, that alse in
human children wotion wvision is devel-
oped first <Yonas Bi>.

If a slide show, =ay on the last wvaca-
tion adventures, is copied onto a movie
film and shown at normal image freguency
(18-24 frames per second) the ohserver
will turn away or close the eyes since a
continuous development of action is
missing. From this one can conclude that
for meaningful wision, temperal conti-
ruity is an essential prereguisite. High
image frequency is not detrimental since
it does not alter the dynamics of the
process being observed; it is, on the
contrary, benaficial since it reduces
the -so-called correspoendence problenm:
Within the small sampling peried T,
which at the usual TV-frame rate is 1%
2,3 ms, features being tracked will move
only by a small amount. When the process
beipg watched is ‘"recognized®, reason-
ably goed extrapolations to the next
frame can be achieved by linear predic-
tion with a temporal model.

If one then succeeds, by expleiting the
difference between the predicted and the
actually measured feature position, in
determining the parameters and the state
variables of the medel, which served as
the basis for “recoghition™, and in
serveoing these wvariables fast and pre-
cisely enough so that the measured
values are well approximated over time,
then a saymbolic representation of the
process in the world has been generated
in the computer. This stable condition
is called "recognition" of the process
by computer wision or "understanding" of
the dynamic scéene,

It is immediately clear that because of
the temporal extrapolation reguired,
time has to be an essential compeonent of
the model. In order to achieve this, the
dynamical models of medern control
theory are wutilized which have been
developed around 1960 in the form of
linearized systams af differential
equations or difference equations in the
diserete linear state space model for
sampled control systems <Kalman 60;
Eailath 80=,

This model based approach eliminates the
necessity to have access to data of
previecus images (in order e.g. to com-
pute differences or optical flow) and it
thereby Trelieve:s computational Jloads
considerably. This has to be paid for by
having to deal with a somewhat more
involved initial orientation phase when
the wvision process starts and when
reasonable model hypothezes have to be
found. However, besides confining image
processing to the last image of the
sequence, this approach has several
additional advantages hardly to be
overestimated:
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+ With respect to actions reguired, gaps
in measurement data may be bridged
over a certain periocd in time by just
using the extrapolated state variables
of the model.

+ The qguality of new measurement data
may be judged relative to the walues
predicted by the model; depending on
the guality of the model, the dynamics
of the process and preknowledge about
general environmental conditions (e.q.
perturbations) a situation-specific
reaction is possible: frem throwing
away the new data up to the initiation
¢f a new subprocess in order to obtain
a more precise analysis of the situa-
tien. In"addition, the dinamical model
allows the application of adapted £il-
ter algorithms for data smoothing.

+ The interpretation of the image se-
guence proceeds simultansously  in
space and time. Meaningfull eentinuity
conditions for features are formulated
easier in 3D-space than in the 2D-
image, e.g. the disappearance or
appearance of features when aspect
angles change or when occlusion cocurs
due to (spatial) object=- or ego-mo-
tion.

+ Well proven spatictemporal madels
allow the prediction of events or the
appearance of objects, features of
which can bea actively looked for: in
this case good hypotheses for inter-
pretation and parameter adaptation are
readily available. (It is easier to
orient oneself in a "known environ-
ment" than in an unknown one. Whole
objects may be recocgnized by detecting
enly a few characteristic features.)

Coming from systems dynamics this ap-
proach %o image sequence interpretation
is readily proposed; it does not seem to
have been investigated more closely up
Lo now, however. Except for our group at
UniBw M, where dynamical models fer
image segquence pProcessing have been used
since 1894 <Meissner 82>, only a few
hints are found in the literatura to
similar approaches <Gennery 81>, <Hives
86>, <Broida, Chellappa ES>. We have
tested this approach at four meotion
control applicatiens:

1. balance of an inverted pendulum en an
electro cart <Meissner, Dickmahns
83>, <Dickmanns, Winache S&a>

2. autonomous read vehicle
=Dickmanns, Zapp 85, 86, 87>

guidance

3. planar deocking maneuver between 30-
objects with a medel control plant
<Winsche 86, 87>, «<Dickmanns, Winsche

&6b>

4. autonomous aireraft landing (simula-
tion) <Eberl 87>, <Dickmanns, Eberl
87

In all four applications real-time
motion control has been achieved with a
real (CCD-) TV-camera and a MIMD-multi-
microprocessor system for image sequence
pProcessing <Graefe 84> in the loop.

In the seguel, the approach is first
described in general terms; then the
applications 2 to 4 are discussed in
somewhat more detail as an introduction
to the references cited. Finally, an
outlook is given on the grewth potential
up to the recognition and wvisual track-
ing of other meoving abjects under egomo-
tion.

2. Inteqral spatio-temporal models
Figure 1 shows a juxtaposition of the
usual procedure in image seguence proc-
essing (upper half) and the 'cybernetie®
approach based on "difference feedback®
{lower half). Spatiotemporal processes
in the real world (1) are imaged by a
TV=camera, wuswally wia a sequential
analog video signal inte an image se-
quenca  {left =ide). In conventional
image seguence interpretation for the
detection of motion two or more frames
cut of bthe seguence have to be accessed
simultanecusly in order teo find corre-
sponding features (corners, contours or
lines) and to obtain displacement wvec-
Lors in the image plane by differencing.
Enowing the sampling period, the veloc-
ity components in image coordinates can
theoretically be determined from this
(optical flow). Due to the inevitable
measurenent noise, these computed veloco-
ities become the more corrupted by noise
the shorter the sampling pericd between
the two frames ewvaluated is (the well
known roughening property of differenti-
ation for neisy data). Based on these
position and wveleocity data in image
coordinates, one then tries teo infer the
imaged spatictemporal processes (3D-
motion): din this step the nonunique
inversion of the perspective projection
has to be performed. There are many
publications +to this ill-conditiched
problem.

In the model-based approach, on the
contrary, through a successfull recogni-
tion process over time thera results a
symbolic spatiotemporal modal-instantia-
tion in the computer of the dynamical
scene being observed (in fig. 1 termed
"world 2" (right) in accordance with
<Fopper TT=Y. The spatial symbolic
representation may be done using krnown
metheds in computer vision or computer
graphics; the temporal symbolic repre-
sentation is realized by differential
eguations for the spatial position,
orientation and wvelocity-components as
state wvariables of the object, e.qg.
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Figure 1: Two basically different ways
of image sequence processing in computer
vision: difference computation between
images (top), model based integration
(bottom) .

center of gravity (c.g.) coordinates and
angular orientaticn around the <.g..

Very often it may e sufficient to take
linear approximations to the differen-
tial equations with %ime- or =state-
dependent coefficients; in a discrete
formulation with respect to time and the
bagic sampling periocd, &4 system of
difference eguations results

H[(k+1)T] = A(k,T) = (KT}
+ B(K,T} u{kT} + v{kT} {1}

where x is= an n-component state wector,
k is the running index of the discrete
time, T the sampling peried, A the n*n
transition matrix, B the n*m control
effect matrix, u an h-component control
vector and v a superimposed disturbance.

Equation (1) without the disturbance
term allows to determine the state
wecktor at time (k+1)T as extrapelation
based on this model by simple matrix-
vecter multiplicatien (nominal predie-
tion). With this 3ID-state the perspec-
tive prejection (3D to 2D forwazd) is
applied to the 3D-shape features of the
object model, in order to arrive at
predicted positions of 2D- features %o
be measured in the image. This leads to:
an impoverished "model @ image", the
components of which are compared to the
measured. actual image. The computer,
therefore, nesdsz to have access to the
last image in the seguence only. In the
sense of modern feedback control theory
isee e.g. <HKalman 60; KXailath 80>) an
additional prediction error term may now
be fed back through a (yet to bs deter-
mined) gain matrix in such a way that
the discrepancies vanish over time.
Depending on the noisze statistics of the
process and the measurements, either

filter- or observer ~techniques may be
selected.

Hote, that this formulation contains the
state wariables in 3D-space as primary
variables and +that all components are
reconstructed or estimated, alsc when a
smaller number of output wvariakles is
being measured {observability assumed as
given). The numerical operations re=-
guired are integrations (summations in
the discrete case), which tend to sup-
press nolise affects: if the =electable
error decay dynamics are chosen properly
{chserver-eigenvalues slightly larger
than those of the plant), the resulting
gain factors lead to an acceptable
behavigur of this eybernetic vision
process, provided the sampling peried is
small, compared to the characteristic
time scale of the process being watched,
and the model is sufficiently good.

The seguence of image comparisons (lower
middle in fig. 1) thus leads to -an
adaptation of the model and of the state
variables, converging over time towards
the process running  in reality. Within
the computing process, thus, the
dynamical scene analysed is duplicated
in a symbolic form by servocontrolled
instantiations of elements out of a
store of components for a world model.
The state wariables of the dynamical
model are obtained explicitly as com-
plete time histeries; they are taken
instead of the =tate wvariables in the
real world 1 as the basis for decisions
with respect to actions, e.g. econtrol
activities. - There are interesting
parallels te old philosophical ideas.

A detailed treatment of speclal appli-
cations' is not possible in the framework
of this survey paper; for this, the
reader is referred to the original
publications cited. The following treat-
ment of the applications investigated is
intended fto help eclarify the general
principle.

3. Automous guidance gf

Forced by gravity and the suppertance of

the ground, road wehicles move parallel

to the local Earth surface essentially.

In order to improve riding comfort, man
has shaped the areas for vehicle move-
ment with a smooth surface (roads): i.a.

only radii of curvature are allowed that
are largs as compared te the whesl- or
axle-distance. The curvatures of these
"surface-gtrips", both in the wvertical
plane defined by the gravity vector and
the &reoad tangent, and in the plane
tangential te the surface determine the-
driving behaviour of vehicles. To recog=
nize both of those is one of the essen-
tial tasks for wvehicle guidance by both
man and computer using vision. This has
te be achieved in a certain leck ahead
range concurrently while driving.
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In a coprdinate frame fixed to the
vehicle when moving aleng the road, the
geagraphically fixed road curvature
appears in the car as a temporally
variable state of the environment. Since
the law, according to which highways are
built (eloteids, i.e. linearly varying
curvature owver arc length), and the
ranges for the parameters yielding
reasonable results are known, effective
filtering methods may be based on this
road model for smoothing neisy  image
processing data <Dickmanns, Zapp 86;
87>. These methods evaluate recursively,
by expleoiting the dynamical model Ffor
the road being driven at speed V, the
two relevant state wvariahles in each of
the twe planes menticned above: 1. the
actual curvature and 2. the rate of
curvature change with are length {(dif-
ferential geometry road skeleton meodel).
The image of the road in a loock ahead
distance, however, also depends on the
position and the orientation of the
camera relative to the road. If the
camera position and its erientation in
the wvehicle are fixed, then the =state
variables of the wehicle relative to the
road (lateral position y and heading
angled) determine its perspective image,
This helds true spatially. Temporal
continuity conditions result from the
vehicle having only limited mobility:
Its wheels revelve in a plane normal to
their axis; the =sliding angle B duas ta
soft tires and slipping are small, bub
not negligeable. From this, side con-
straints in the form of differential
equations for vehicle motion result: If
the wvehicle does have an angle relative
te the road not egual to zero, there
will be resulting a lateral offset y in
the future; this, in additien, depends
on the centrifugal forece (-~V?) and the
steering control. Introducing the knowl-
edge of these interactions into the
process of image seguence interpreta-
tion, again a wvery effective recursive
approach for estimating the entire state
vector of the wehicle results. Though
only some feature positions are being
measured, all position and zpeed compo-
nents are determined expleoiting always
the last image of the sequence only
<Dickmanns, Zapp 85, 86, B7>. Fig. 2
shows the cooperation of the two dynami-
cal models for curvature determination
(upper  part) and for wvehicle state
estimation (lewer part) in the feedhack
loop.

Road curvature ¢ determined in the look
ahead range is not only used for driving
the anticipatory part of the lateral
control uy j,p, but alse for automati-
cally adapting leongitudinal speed V.
This is adjusted in such a way that the
lateral acceleration a, = eV? stays
below a preset limit vafhe {e.g. 0.1 of
Earth gravity g). Both in simulations
with real sensors in the loop and in

Figure 2: Block diagram for high speed
road vehicle guidance by computer wi=-
sion: model based estimation of curva-
ture (upper right) and vehicle =state
relative to the road (lower right).

real experiments with our S5-ton test
vehicle for autonomous wobility and
computer wvision, VaMoRs (fig. 3), this
metheod has proven teo be very efficient.

Figure 3: The UniBw M test vehicle for
autonemous mobility and computer vision
VaMoRs.

In Eully automatic test runs speeds up
to &0 Km/h have been achieved, where the
vehicle adapted speed to the curvature
of the track antomatically. One of these
test tasks is shown in figure 4. Image
sequence evaluation- and control eyecle
time has been 0.08B to 0.1 seconds.

Other wehicles as partners in reoad
traffic may be obzerved and tracked
using very similar methods and the same
camera (see below).

4. Flanar relative positioning

A freguent task in robotics iz to posi-
tion a controliable three-dimensiconal
vehicle relative to ancther 3D-cbject.
Using the dynamic approach to computer
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Figure 4:
One of the test runs for VaMors.

vision described above, H.J. Winsche
developed. several important implementa-
tienal details and demonstrated iks
performance and efficiency in fully
auvtenomous  docking  maneuvers with a
model control plant in the laboratory
sWinsche 87>. Fig. 5 shows the aircush-
ien wehicle with a computer controlled
reaction jet propulsion system on a
planar table together with several
docking partners. The convex prismatic
shapes of the bodies are assumed to be
known. They ‘are represented in the
computer by wire frame models. The
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reaction jefs L—.‘!mpamn;l WA ?Sﬂf“h—iug gvvl ™

Figure 5: Satellite medel plant for
visually controlled docking.

videosignaol

contrelled wvehicle carrying a CCD-TV-
camera has the task to recognize its
docking parkner, drive towards it,
racognize the precise position of the
docking port, position itself ‘axially
relative to it and finally to maneuver
towards the partner until mechanical
lock-in is achieved. During this maneu-
ver relative position and weloeity have
tc be evaluated steadily in order to
guarantee safe process control. Partial
occlusions of the target body over a
finite pericd of time may occur but are
not  allowed teo disrupt the docking
procedure.

In <Winsche 86; §7; Dickmanns, Winsche
Béb)> application specific details are
given. Corners in the perspective pro-
jection are chosen as features to be
tracked; the complete state vectoar of
the wvehicle relative to the docking
partner is estimated recursively by
tracking a wvarying number of these
features in the monocular image sequence
over time. The state vector cansists of
two  translatory positions and speed
components and one angular orientation
and rate; together with the camera piteh
angle and a rotatory disturbance accel-
eration, - -eight—-state components are
steadily estimated.

Kalman filter techniques in a sequential
stabilized formulation are used based on
tracking up to four feature positions,
By econtinucusly checking a performance
index, those features are automatically
selected which vield the best estimation
results, oOeclusiocns due to changes in
aspect angle are predicted and feature
tracking is redirected autonomously. If
a sudden ocelusion of a feature by an
unexpected object occurs, after a shert
period of repeated trials at the old
feature position a new combination of
features is selected yielding the next
best performance index. bDue +to the
strong perspective distortion of imaged
features at smwall distances, the algo-
rithms have to be tolerant against
changes in feature shape. Fig. & shows a
block diagram form 'of fig. 1 (lower
part} for this application. In figure 7
results of a test run over %0 seconds
are dgiven; in which the vehicle first
turns towards the docking partner (U-
reduction for t«<%z, first row) then moves
towards it (R-reduction for 13<t<20s,5-
th row), ecircumnavigates it at constant
R {for 20<t<60s, last two rows, v being
the pelar angle and VT the tangential
velocity component) and finally closes
in for docking (t>60s, see R and VR) .

The approach developed in this applica=-
tion for 3D-cbject recognition and-
tracking is generally applicable and is
preésently being transferred to the task
ef recognizing other wvehicles, distance
keeping and collision avoidance in road
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scenes. Here, the object shape and its
relative mobtion state have to be deter=
mined =simultanecusly. Background know-
ledye on road-vehicle shapez and their
mekility parameters is exploited to
alleviate the task of generating simul-
tanecusly both =patial and temporal in-
terpretation hypotheses.

In thiz case, both shape- and dynamical
model-instantiations from a long term
memory model-basze have to be tested
against feabture aggregations from the
image seguence; simultanecus reasoning
in space and time is reguired. Shape
models will be based on the pormalized-
gurvature-function (HCF) repre=sentation
proposed in <Dickmanns 85>.

In order to alleviate the solution of
this task, the next generation of ocur
image seguence processing system  BVV
provides the capability of active (fast)
control of the wviewing direction (see
<Mysliwetz, Dickmanns 86:) and of ana-
lyzing wideo data of two TV cameras in
parallel (e.g. for tele- and wide angle
lenses. yi&ldlng images of different
resolution) .

. n b mputer visiop
This is= the most complex real-tine
motion control task solved by computer
vizion up teo now. Aldrcraft motion coccurs
simultaneously in six degrees of frec-
dom: three translatory and three rotary
onas. In each degree of freedom, accord-
ing to Newtonrs law, one differential
egquaticn of second order is required to
model the dynamical behaviour, so twelve
state wvariahles are necessary to de-
scribe the rigid body motion.

: Figure &3
MO et | Block diagram for
; the "dynamic=-" or
- "4D-" wision con=-
= _ cept

An aircraft is controlled by selecting
four control wvariable time histeories:
Elevator for pitch and altitude, aileron
for roll, rudder for yaw and sideslip
and throttie for thrustlevel control; in
addition diverse flaps may be set for
certain flight regimes (start and land-
ing). To direct such a vehicle in a well
controlled maneuver regquires skill and
concentration even for a trained human
pilot; he has to acguire this capability
in an extended learning process. In case
that he would like to switch to a dif-
ferent type of aircraft, he has to
submit to a type rating procedure. Here,
he not only has to become acquainted
with the positions of knobs and dials
but he has to develop a Teeling for the
nermal dynamic behaviour of the wvehicle
following certain control inputs. Typi-
gal motion seguences in time are essen-
tial knowledge elements with respect to
his task of reacting correctly in given
situations.

Exactly this knowledge, coded in differ-—
ential eguations as side constraints to
the development. of trajectories, should
be available to an automatic system for
recognizing and controlling landing
approaches by computer vision. Though it
ia possible to obtain the actual posi-
tion and relative orientation of a
camera (up to a scaling factor) from a
single image containing the rectangular
landing ‘strip and the horizen, it is
hard to extract velocity components from

-4 sequence of noise corrupted images by

differencing in the conventional manner,
especially when control activation is
based on these noisy data.

S}multaneously exploiting spatial and
temporal wmodels as szhown in section 2
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Figure 7: Time histories of state varia-
bles for a docking maneuver by computer
vision in real time (from <Wiinsche £73).

and figure &, G. Eberl has shown that
the problem of contrelling landing
approaches. by wisual feedback %o the
computer may be tackled successfully
relying on present day microprocessors
<Eberl 87>. In a six-degree-of freedom
simulation with real-time image sequence
processing hardware in the loop, com-—
plete landings starting frem 2 km
distarice have been performed fully
autonomously with aerodynamic speed ¥

T Fhe - Fataierihard wiRe ] Wiimns fyilem =
Favka Elmar. 3kib L _&"_,) L TRTH B T ———

being the only guantity not determined
from wvision. Twelve state wariables and
four control time histories have to be
determined depending on the perspective
distortisng and its rates in the image
of a recbangular planar landing strip.
The problem has been solved using three
cooperating Kalman filters ({of sixth,
fifth and second order) on a Perkin
Elmer computer PE 3252 which was able to
compute both the motion simulation and
the state- and contrel-svaluation in 100
ms oycle time. (fig. 8). It seems un-
likely that such a complex task can be
handled by computer vision without using
integrated spatio-temporal process mod-
els.
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Figure 8: Hardware in the loop simula-
tion for automatic visual landing ap-
proach of an aircraft

&. Conclusions

By unifying dynamical models, 3D-shape
representation and (forward) perspective
projection and by using this integrated
model in the sense of observer-/filter-
methods of modern controel theory, a
formulation of the recognition process
simultaneously in space and time has
been achieved. Though only data of the
last image of a seguence are being
processed; by exploiting spatio-temporal
models of the process in the scene being
watched, -alse speed  components in 3D-
space can be determined using smoothing
integration {summation) operaticns over
time. The inversicn of the perspective
projection is bypassed by extrapelating
the motion-ztate with the dynamical
model over time in order to obtain the
model-state wvariables at the next meag-
urement point in time. For this state
the features to be evaluated in the real
image are computed in the "impoverished
model image" by forward projection. The
measured differences  ‘between  these
featurs positions and the actually
measured ones are used to dimprove the
model state in space and time (velocity
components) directly: only the partial
derivative matrix of the perspective
projection eguations with respect to the
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state variables of the dynamical model
is neesded here; the error decay rate may
be selected fixing the carresponding
feedback gain matrix as  known from
medern control theory.

This approach offers a sufficiently rich
imbedding for the interpretation process
in space and time and is computationally
efficient. The models may be time-vary-
ing (e.g. wehicle dynamics as funetion
of speed): the method even then works
reasonably well provided the model rate
of change iz slow as compared to the
image frequency. The results achieved up
te now in four application areas are
encouraging; they have been obtained
with sampling rates from B to 25 Hz.
Develeopment steps are being done pre—
sently towards the capability of han-
dling more complex situations where
{several] objects of unknown shapae may
ocour having unknown dynamical models.

1pr.-Ing., Prof. for controel Engineering
This research has been partially
supported by BMFT and DFG.
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