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Abstract: A new approsch o reul-time machine vision in
dynamic scenes 1% presented based on special hardware
ind methods for feature extraction and information pro-
cessing, Using integral spatio-tempoinl models, it by.
passes the nonunigue inversion of the perspective projec-
tion by npplying recursive least squares filtering, By
prediction error feedback methods similar (o those used
in modern control theory, all spatial state variables in-
cluding the velocity components are estimated, Only the
[st imuge of the sequence needs (o be evaluated, thereby
alleviating the real-time image sequence processing task,
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1.  Introduction

Dynamic vision 15 moreé than fast processing of
static image sequences. The dynamics aspect rests
primarily in the scene observed or in the motion of
the sensor and is independent of the image fre-
quency; as in any sampled measurement process,
high sampling rates are necessary for recovering
highly dynamical changes. In vision, however, in
addition to this, high sampling rates reduce the so-
called correspondence problem, that is, keeping
trick of special image features or objects in space
from one frame to the next.
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Note that humans, when talking about dynamic
seenes, do nol converse in image lerms bul do pre-
fer spatial interpretations, both in position and ve-
locity, whenever possible. They try to see motion of
objects in space. Motion properties of objecls are
an integral part of a person’s knowledge base like
possible shapes and colors. Similarly in the ap-
prouch described below, a direct spatial interpreta-
tion of image sequences is achieved by using spatial
and temporal models in conjunction, This unified
approach in space and time is the core of the 4-D
method developed and tested for machine vision,
Applications are discussed in a companion paper
(Dickmanns and Graefe 1988, this issue; p. 241),

The immediate inclusion of temporal aspects is
very essential since it allows a proper definition of
state variables and the introduction of temporal
continuity conditions for image sequence interpre-
tation by exploiting differential equations. Geomel-
ric shape descriptions and generic models for mo-
tion rogecher constitule the basis for an integrated
spatio-temporal approach, which may be termed
“4-13 vision"" or “dynamic vision,"

This means that not just objects are being seen
but motion processes of objects in space and time,
Mote that unlike "slatic™ image sequence process-
ing, dynamic vision has no separation between spa-
tinl object recognition from one frame 1o the next as
a first step and motion reconstroction afterwards as
a second one. Instead, object and motion are
treated as g unil and the least squares fit for deter-
mining the best estimate for the object motion state,
based on noise corrupted image sequences, is dong
in space and time simultancously.

As o very beneficial side effect, the need for stor-
ing past images (e.g., for computation of displace-
ment vector fields or oplical Aow) is reduced, The
state of the scene observed is represented on a very
high symbolic level by the shape descriptors and the
spatio-lemporal state variables including spatial ve-
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Figure 4. Two basically different methods of image sequence processing.

terwards; instead, all interpretation is immediately
performed in the 4D space—time continuum.

Similar to using shape models for object recog-
nition, temporal models appear 1o be of great ad-
vantage for motion parameter recognition: As the
term recognition tells, the intlerpretation process
does have background knowledge of what it is going
to “'see.” at least as a peneric class from which
special objects are being instantiated through data
based hypothesis generation. This usual approach
for shape recognition has been augmented by asso-
ciating the object with its environment and the
viewing conditions for image sequence taking: If the
object is al rest amnd the camera moves, & generic
dynamical model with state variables x for the cam-
era motion is introduced; if the camera is at rest and
the object moves, a model for this mofion is se-
lected. In both cases physical motion constraints
and optional control or disturbance inputs are in-
cluded. (The case where both camera and object are
moving is much more difficult and presently under
mvesligation. )

The general standard form of 2 generic dynamical
model is a set of n differential equations for n state

vanables. usually nonlinear, sometimes with time-
varying coefficients. As in modern control theory
for sampled systems. locally linearized approxima-
tions with transition matrices for the sampling pe-
riod T and influence coefficients for the control are
being used. All coefficients are assumed to be con-
stant over 7. This basic cycle of period T for model
based measurement inlerpretation and control ac-
tion has becn sclected around 0.1 s (10 Hz); the
more complex situation analysis on a higher level
may be slower.

an integral spatio-temporal world model 1s three-
fiold:

I. Eliminate the need to access past images

2. Determine spatial velocity components by
smoolhing nemerical integration

3. Bypass the nonumque inversion of the perspec-
tive projection by doing recursive least squares
state estimation exploiting the Jacobian matrx
of the measured image features (their partial de-
rivatives with respect to the state variables of the
dynamical model).
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Figure 7. Block diagram of 4-D feature based vision concept including active gaze control. long term model storage, and

goal driven activily planning.

{upper left), and application of motion control
through effectors (bottom). Since dynamical models
are available, direct slate vanable feedback may be
used in order to achieve reflex-like behavioral com-
petences. Thus, for example, in road vehicle guid-
ance, lane-keeping and proper speed control may be
achieved without continuously running cumber-
some planning activities. Moniloring subprocesses
just have to provide **road recognized™ and *‘road
free of obstacle” signals. As long as these are true
and the goal i5 not yet achieved, the system contin-
ues in this mode. Al logical variables required for
mode continuation form the set of continuation con-
trol tags.

Their value, in turm, may be changed either by
sensory data including situation variables derived
therefrom or by decisions taken in the continuously
active mission planning and monitoring subpro-
cesses, Depending on the particular continuation
control tag becoming false, specific other behavior-
al modes with proper sensing activities and feed-
back control laws, if necessary adaptable by situa-
tion dependent parameters, may be invoked, taking
care of a gradual transition from the old mode 1o the
new one.

A sufficiently nich set of behavioral modes in-
cluding smooth transitions has o be developed and
stored in long term memory. In addition, knowledge
has to be implemented in the interpretation process
as to which behavioral competences should be ac-
uvated with which set of parameters, depending on
the situation and the goals to be achieved.

In the long run, the sysiem should be able 1o
learn from statistics il accumulates during each mis-
sion. This is, however, far off in the future.

The systems we have developed up to now only
have very simple reflex-like behavioral compe-
lences. Some inleresting guestions arise when we
try o imagine what kind of behavior much more
complex systems might display (in a nol very neéar
future}, if they continue to be based on the peneral
principles explained in the previous sections.

The actual world 2 instantiated in the interpreta-
tion process is forced to remain close 1o the real
world by critical feature companson and comre-
sponding model adaptation based on the measured
image data and the data from other real-world sen-
sors (left column in Figure 7). What could happen if
all these sensory inputs would be cut off and the
central and right blocks would continue working on
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Abstract: The 4-D approach to real-time machine vision
presented in the companion paper {Dickmanns and
Graefe 198K, this volume) is applicd here 1o two problem
arcas of widespread interest in robotics. Following a dis-
cussion of the vision hardware sed, firsi, the precise
position control for planar docking between 3-D vehicles
is discussed; second, the application 10 high speed road
wehicle guidance i1s demonstrated. With the 5 ton 1est ve-
hicle VaMoRs, speeds up to 96 kmh (limited by the speed
capability of the busic vehicle) have been reached. The
test run available, of more than 20 km length. has been
driven aulonomously several times under various
wezather conditions.
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1. Introduction

In the companion paper (this velume) a set of prin-
ciples and methods emphasizing the dynamic as-
pects of machine vision have been introduced. In
this paper. four applications of these concepts in the
form of demonsiration experiments are described,
together with some technical details of the real-time
vision hardware used. These experiments not only
served for developing the concepts but also for con-
vincing both ourselves and others that the concepts
are indeed practical.

Addresy repreing reguests fo: Prof. Erast D. Dickmanns,
Steuer-und Regelungsiechnik, Universitit der Bundeswehr
Minchen, Fakultat fir Loft- und Rauvmfahritechnik, Institui
Fir Systemdynamik und Flugmechanik, Werner-Heisen-
berg-Weg 39, D804, Neubiberg, West Germany.

This research has been partially supporied by the German
Federal Ministry of Research and Technology (BMFT), the
Deutsche Forschungsgemeinschafll (DFG), the Dmimler-Benz
AG, and by Messerschmiti-Bolkow-Blohm GmbH (MBB).

Simple motion control tasks in the dynamic range
of a human operator, albeit confined to a visually
well structured environment, were considered to be
both sufficiently demanding and rewarding for the
initial demonstration of practical applicability. 1n
order o emphasize the real-time aspect, we delib-
crately imposed a cycle time limit of about 0.1 s (100
ms) on the interpretation and control process, This
was intended to and succeeded in spurring the
group 10 think in different terms than when lime
consiraints do not play any role, hoping for proces-
sors to become fast enough to run any algorithm in
real ime. With the “*real time™" concept we under-
stand two things in the context of computer vision:
that the low level part of the sysiem should sample
the scene at the highest rate practical and thus pro-
cess every image delivered by the TV camera,
which limits the processing time for each image to
17 or 40 ms, depending on the TV standard used;
and that the response time of the entire vision sys-
tem (the time between some visible event in the
scene and the output of a control signal which has
been caused or influenced by the event) should not
be much longer than for a human. Both software
and hardware concepts have developed in different
directions than they would have done without this
side constraint; but especially the methods for in-
formation processing have shaped up differently.
The real-time constraint called for recursive meth-
ods as have been developed in modern control the-
ory. Gradually, it became clear that temporal co-
herence is as important as spatial coherence for
visual dvnamic scene analysis.

This has lead to the 4-I method presented which
appears o be a nalural extension of modern control
engineering tools. The availability of temporally
dense time histories of the spatial states including
velocity componenis of all relevant objects in the
scene provides a rich basis for inferencing and ap-
plying Al methods in the future in order to perform
a more complex analysis of the situation.
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Figure 2. The second generation vision system BVV 2.
ADC: Analog to digital converter

CG:  Central clock generator

DAC: Digital to analog converter

SBC <, syslembus [mullibus 13 >

GPIB: General purpose inlerface bus connecting the BVY 2 to other equipment, e.g. & host computer
PIX: Pixel processor (for preprocessing digital images on the fly)

PP:  Parallel processor

SBC: Single board computer, based on the Inel 8086 processor
8P System processor (it coordinates all infernal and external communication)
VYBI: Videobus interface; it reads and stores pixel data from the videobus and makes them available to the PP (not all

PPs need a VBI; sec text)

The 1otal number of analog 1o digital converters and pixel processors is limited to 4, the number of parallel processors is

limited to 15,

tions is not the sheer computing power of the pro-
cessors of the BYY 2 but rather its flexibility, which
allows the entire power to be concentrated on the
relevant regions of the image. Optimizing the hard-
ware by itself is, however, only part of the solution.
What is really important is to oplimize several
things as a whole and, if possible, simultaneously:
the basic methods for feature extraction, the way
these methods are cast into algorithms, the hard-
ware on which the algorithms are to be executed,
and the feature based 4-D interpretation of image
sequences. In reality it is difficult to oplimize so
many different interdependent things al the same
time; a sequence of ilerations is a more realistic

approach.

2.3 The Future
By performing experiments in dynamic vision using
the BVV 1 and BVV 2 (see chapiers 3 through 5),
much has been leamed regarding methods and al-
gonthms for low level vision. In 1986, as a result, a
new vision system, the BVV 3, has been designed
{Kuhnert 1986b; Graefe and Kuhnert 1987). The
goal is to build a system which is optimized for
those classes of methods and algorithms which have
been found particutarly useful for low level vision.
The BYY 3 will have the same structure as the
BVYV I; the parallel processors will, however, be
different (Figure 3). The single-board computer will
now be based on the microprocessor Intel 80286; it
is about two to three times more powerful and it has
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Figure 13. System architecture for a vision controlled autonomous road vehicle.

in the interpretation process, exploiting the pre-
dicted state and feature positions ¥*, the incoming
measurement data are screencd. oulliers are re-
moved, and the image sequence analysis performed
by the PPs is supervised and adjusted 1o the present
interprelation status.

5.2 Road Model for Recursive Estimation

Here, only those parts of the visual recognition pro-
cess necessary for guiding the vehicle along a free
lane ar¢ given, omitting other objects and traffic
information. High speed roads are modelied as a
sequence of N arcs with linear curvature models
defining the skeleton R of a band with constant
width b. With A as absolute and [ as relative run
length in each segment this may be wrilten

N
R =2 (Cu+ Cild
=1
= h = L[ - A= {2”

Cy = 0 outside

C, is the constant curvature part of the model and
C, = dC/di is the linearly varying part over arc

length, The parameters of this structural model (C,;,
€, and &) have to be determined from the visual
input for a certain range L in front of the vehicle.

By definition of the road model Eq. (21), using
the chain rule, there follows for the curvature €, at
the location of the vehicle traveling at speed V lan-
gentially to the road

F o d i
Cv=2C)=75 € g =GV 22)
0 on one segment

VB(l — Aj). a Dirac-impulse (23)

5 d
- E[‘Cﬂ ) at a transition poi
point Aj

for practical purposes €, is considered to be ran-
dom noise ngli).

These equations may be written in stale space
form

Cy
€y

Cy . 0
Ci nglr)

0 v
0 0 =Fﬂn*1"ﬁ

(24)
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Lateral dynamics. A planar “'bicyele” substitu-
tion mode] according to Strackerjan (1975) has been
applied. Two degrees of freedom are the sideslip
angle @ and the inertial vaw rate d  described by the
following equations of motion:

mVi + (Up + Uy + pay + )P

[ 15 i
("I v+ }.u',-f. = Ly TE} i,

=Ly + pedh {27)

L,

T

I‘.:::h'fif + odly, = pledy = ed)B
= (U + peglhb (28)

where 1, is the moment of inertia around a vertical
s, ¢y, are normal side force coefficients applica-
ble 1o front and rear axles. f;, are the distances of
the CG 1o the fromt and rear axle respectively, U,
are the circumfercntial forces on the wheels, and w
is the friction coefficient between wheels and road,

B is the steer angle of the fromt wheels, In the
vehicle a computer controlled stepping motor
serves as actuator for steering. It has been modelled
s an inlegrator

bo=iky 129
where & is limited 1o 15 deg/s.

The lateral position v, on the road is constramed
by the differential equation

Fo= Widx + 8- 0 = Wiy = B+ & L

where Ay is the path azimuth angle relative o the

Figure 15. VaMoRs, the experimental vehicle for auton-
emous mebility and machine vision,

road, d = f, + [ is the axle distance, and the road-
oriented vehicle yaw angle iy is linked to the iner-
tial vaw angle i, by

b =, = Cy¥ 131

The last term represents the temporal road heading
change due to curvature Cy, and vehicle speed V,

5.4 Integrated State Space Model for the

4-I> Approach
The imuaging Eq. (26} contains contributions both
from the road (b and y) and from the vehicle state
(v, and digh.

Combining Eqs. (26) to (31) one obtains a state
space model for lateral dynamics relative to a road
with visual measurements taken at the look-ahead
distance L. 11 is of fitth order with the state vari-
ables

a8 B g yy.8)

X = Fo+pn+ hCy (RS
where
fis Jiz: 0D fia ] ]
oy S22 00 fay 0 0
Fo= 1 D Q00 g= 0 h= =V
0 =¥ VL i i
LS T I ) ke [

The component » contains o contribution due to
road curvature Cy. The elements f; depend upon
the parameters V, o, . the side foree coefficients,
the vehicle CG location, and the circumferential
forces on the wheels,

The dominant effects caused by parameter
changes are due (o speed vanations, which also are
the most frequent ones. Adaptations to changes in
mass moare—if at all—only necessary at the begin-
ning of a4 mission. Changes in (riction coefTicient p
miy be due to road surface parameters including
weather conditions. Since speed is the only easily
measurable varmable and has the largest influence on
vehicle behavior under normal conditions, its effect
on the model 1s always taken into account, that is,
the nonlinear physical model is approximated by a
time-varying mathematical model with speed V gov-
erning the coefficients (Zapp 1985). In the experi-
mental vehicle VaMoRs, speed is derived from the
digital odometer system,

The two systems of Egs. (24) and (32) may be
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where (several) objects of unknown shape may oc-
cur having unknown dynamical charactenistics.

In order 1o be able to handle more complex tasks
efficiently. the introduction of artificial intelligence
methods on top of the 4-D stale representalion
seems (o be favorable. Note that in this approach
actions are an integral pari of the internal represen-
tation.

Observing and analyzing state variable time his-
torics may provide a direct access to temporally
deep reasoning including frequency domain meth-
ods.
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