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Summary

A visual sensor data processing method has been
developed and validated which allows to achieve on-
board autonomous landing approachesin the visual flight
regime with computing technology available today; sen-
sors are a video-camera, inertial gyros and an air velocity
meter. The key feature of the method is the reconstruc-
tion and servo-maintained adjustment by prediction
error feedback of an internal spatio-temporal model
about the process to be controlled (4D approach). This
encompasses both the egomotion state of the aircraft
carrying the sensors and the relevant geometric proper-
ties of the runway and its spatial environment. The effi-
ciency of the approach is proved both in a hardware-in-
the-loop simulation and in real test-flights with a twin-
turbo-prop aircraft Do 128 of Dornier. For accuracy
evaluation of the data gathered, the results of differential
GPS and radiometric altitude measurements have been
recorded simultaneously.

List of Symbols

ADC  analog digital converter

BVV image ssquence processing system
DAC digital analog converter

DBS three-axis motion simulator

u,v,w translational velocities of the airplane
p,q,r  angular velocities

@, ®,¥ Euler angles

%y, H  distance of the airplane to the runway
7 elevator angle

E thrust

£ ailleron angle

& rudder angle

X state vector

u control vector

D s transition matrix (longitudinal, lateral motion)
A Jacobian of system model

H Jacobian of measurement model

K Kalman gain matrix

P EITOT covariance matrix

Q covariance matrix of system noise

R covariance matrix of measurement noise
G input matrix of noise process

1. Introduction

Electronic micro-miniaturization of sensors and proces-
SOTS is progressing to a stage where machines may be
provided with the equivalent of the human sense of vision.
Only a few years ago, the 1 million-instructions-per-sec-
ond (MIPS) performance class for digital computers has
been a magig limit; within a few years the 'GIPS’-class
(Giga, Le. 10” instructions per second) will be common-
place. This will allow to process high data rates as pro-
duced by imaging sensors in real time. Color video re-
quires a data rate of the order of magnitude of 10 MB/s.

However, data rate is not the esseatial point since it is the
information content of an image which is useful for
achieving some goal based on image sequence pro-
cessing. Within a high frequency image sequence there
may be quite a bit of redundancy since the situation
changes only slowly over time, in general. Therefore, the
main task of real-time image sequence processing is to
reduce data rates but to keep as much information about
the process to be controlled as possible.

A uniformly grey image contains as many picture ele-
ments (that means 8 bit data points) as a highly structured
one; yet, the information content of the former may be
summarized completely (without any loss) by 1. the sym-
bol "uniformly grey’ and 2. the number coding the grey
level. For a IK*1K pixel ima%c this corresponds to a data
reduction of the order of 107,

This is well appreciated in static image processing where
segmentation of regions with similar characteristics is a
generally accepted first step; region or contour models
allow much denser representation and storage of infor-
mation than handling individuval pixels. However, the
same has not been true along the temporal axis in most
approaches to image sequence processing. The 4D ap-
proach developed at UniBwM (1 to 5] combines both
spatial and temporal models about processes in the world
and fully exploits continuity conditions along all 3D space
axes and along the time axis simultaneously, hence the
name '4D approach’.

In this approach, all processing activities are geared to
the next point in time when new measurements are going
to be taken. There is no storing of previous measurement
data for differencing or rate computation; this is of espe-
cial interest in image sequence processing where cach



measurement means huge amounts of data (10° to 10°
Bytes), however, very much less new information once
the notion of objects and their states has been introduced.
The results of previous measurements and evaluations
are stored in parameters and state variables of generically
(structurally) defined object models including their mo-
tion behavior. In modern control theory this procedure
is well known as recursive estimation (Kalman filters,
Luenberger observers). This has been extended to per-
spectively mapped image sequences and was shown to be
numerically very efficient. The flexibility of the approach
has been demonstrated in the application areas of road
vehicle guidance [2, 3], satellite docking [4], landmark
navigation for autonomously guided vehicles on the
factory floor and for landing approaches of aircraft, The
latter one is the most demanding application up to now
and will be discussed in the sequel.

2. Mulfi-point model of airplane dynamics

“~The most pretentious application of the 4-D approach is
the automatically controlled landing approach of an air-
plane, because here a body is able to move within all six
degrees of freedom (three translational and three ro-
tational). According to Newton’s law a state vector with
12 components is necessary for the description of the
complete dynamics of the airplane. These equations are
nonlinear. Contrary to the often used one-point airplane
models, for this application a multi-point model descrip-
tion is used, The aerodynamic forces and moments are
modelled separately on the wing and on the elevator unit
(fig. 1) [6]. Wind effects, which have a considerable in-
fluence on the aircraft dynamics are included in this
model too.

Fig. I: Multi-point model of the Dornier Do128 airpla-
ne

The state vector x consists of the translational (u, v, w)
and angular (p, q, r) velocities, the Euler angles
@, ©, W, and the distance to the middle of the runway
threshold (x, y, H), which is the origin of the coordinate
system chosen. The four component control input vector
uis assembled of the elevator angle, thrust F, the aileron
angle £ and the rudder angle £. With this, the set of first
order nonlinear differential eqs. may be written in the
standard form for a ‘dynamical model’;

x=T[x©,u@), 0] . ®
After linearisation around a (sliding) reference point xo,

ug, the 12-th order system splits into two loosely coupled
6-th order systems: the longitudinal one with

XL = ,w,q,O,xH) ; u=(,F)" (2a)
fmd

X, = AL[x0, uo] x1, + Br[x0, uo] uL ; (2b)
the lateral one with

x5 = (0,1, ,W,y)"; us = (§,8)7 (3a)
fmd

xs = As[xp, ug] xs + Bs[xo, up] us . (3b)

The linear systems are the basis for developing a feed-
back controler, while motion simulation is performed
using the original nonlinear equations (1).

3. Visunal measurement model

For the imaging process from radiating points in 3D
space onto the image plane the simple pinhole camera
model is adopted (straight line perspective mapping). A
point P in the runway plane has the coordinates (xt, yL,
z1) in an axis frame with the origin in the center of the
runway threshold and the x-axis aligned with the runway
center line (fig. 2). The position of the airplane in this
coordinate system is at point (%, y, z), where a geodetic
coordinate system with zg in the direction of the Earth
gravity vector is affixed to the aircraft center of gravity
(cg); the xg-axis in the horizontal plane is usually defined
towards geographic north. For a right handed system the
¥g axis then points towards east.

The angular orientation of the aircraft relative to this
geodetic system is given by the three Euler angles
W, ©, ®, where the sequence of rotation is of importance
for the final orientation; here, the z-sequence (P, ©, W)
has been used since it yields relatively simple results in
combination with the viewing direction control. In the
aircraft-oriented coordinate system indexed f, the pro-
jection center of the camera has the coordinates (I, ly,
1). This is the origin for the camera-oriented coordinate
system (indexed k), the angular orientation of which
relative to the f-frame is yca around the zf-axis and Gca
normal to the xyi-plane, positive upwards. The point P is
mapped into the image plane at distance f (focal length
of camera lens) normal to the xca-direction with the
coordinates zgy in line-direction (horizontally) and zg; in
column-direction (vertically).

Using homogeneous coordinates, the transformations
can be easily computed by 4*4 matrix multiplications; the
following sequence is applied: From runway-coordinates
translation Ty into geodetic coordinates, rotation R¢into
airplane coordinates, translation Te into platform-base
coordinates, rotation Rc; into camera coordinates and
perspective projection P into image coordinates (for
details see [9]). The nonlinear overall mapping equation
may be written in vector form for the two image coordi-
nates z, with p as camera mapping parameter vector

z=h[xp] 4)



center of gravity
ajrplane

Fig. 2: Mapping a point from the runwy into the image
plane of the camera [9]

Withdx = X1.-x,dy = YL -y, H; = height above ground
(-z), and the denominator

D = b4y de + baz dy + baz Hz + bag , (da)
a point in the runway plane at (Xr, Y, 0) will be mapped
into the image plane at

zBy = (b21dx + baady + basH; + b24)/D (4b)
2z = (bs1dx + b32dy + b33H, + b3g)/D (4c)

where the bjj are coefficients depending on the transfor-
mation parameters (see [9]). Real measurements are
always noise corrupted; therefore, for image interpreta-
tion through recursive estimation an additive noise term
v(t) is assumed to be present with covariance matrix R.
The Jacobian matrix of the right hand side of eq. (4) taken
with respect to the aircraft state x is abbreviated with H
(see eq. (7) below); this matrix and the coefficients bj
become especially simple if the viewing direction is fixa-
tion controlled towards a point at the horizon where the
runway borderlines intersect each other, This is obtained
by a two-axis platform on which the camera is mounted.
This platform is able to move in azimuth and elevation
thus trying to keep the picturc of the runway in the center
of the image plane.

Eq. (4) is evaluated at ten different points in the runway
plane where linearly extended intensity gradients may
easily be found by intelligently controlled correlation
with gradient templates (clongated ternary masks), see
figure 3.

Knowing the shape of the runway, usually a rectangle, the
appearance of the borderlines under perspective projec-
tion can be computed from the four corner points, given
the relativ aspect conditions - in the definition chosen,
exactly the aircraft state components. Eight windows are
placed on the runway boundaries and two on the horizon
in order to determine the roll angle.

Once an initialisation has been achieved, the search re-
gions within the windows can be kept small since, due to
motion prediction exploiting the dynamical model and
previous control inputs, only the effects of disturbances
have to be compensated by the search. Systematic
changes in perspective projection are taken into account
since all internal representations are simultanously in 3D

space and time. This is equivalent to what psychologists
call the 'Gestalt’ phenomenon: When it is known what to
look for, the interpretation of a scene may be much easier
and less ambiguous than without any previous knowl-
edge. This has been of great help in road recognition
when, due to shadows from trees, intensity gradients are
abundant and the highest correlation values do not at all
correspond to road boundaries. Runway recognition,
usually, is much more simple; however, taxiway entries
and exits may be compensated for by dropping the meas-
urements in these areas.
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Fig. 3: Regions of evaluation (windows) within one
image

4. Filter model for estimation of the complete state vec-
tor in real-time

In order to establish an Extended Kalman Filter (EKF)
for the estimation of the complete state vector in real-
time, the nonlinear equations of motion (1) are used.
Based upon this 'dynamical model’ the fundamental al-
gorithm of an EKF may be found in [8] and looks like
follows:

The transition matrix < over one cycle period
Al = (j+1 — tj is obtained from the linearised nonlinear
system equations (1) with the Jacobian A:

Lo 16y = EE@®,u@, 1]
AlRE o)) = TEREQLLL
x =x(t |t}
® is defined as
D [, i x(z |1)] = OB (6)

P denotes the error covariance matrix, Q and R the
covariance matrices of the system and measurement
noises, while G is the input matrix of the noise process.

H is the Jacobian of the right hand side of the nonlinear
measurement equations h [x, p, £; ] with p as parameters:

o R ) = L2 ERAL : Q)

X =§(tn—)

The final algorithm can be written as:
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Extrapolation

~ ~ ti+1 ~

x(61) = X(6") + [ £ [x(, ), u(o), ) e ®)
ti

G+1
P(ti%1) = D PEHDT+ [® G(r) Q) GT(r) DT ar (9)

t

Innovation (with H = H[f; ;';(fi_)])

K(5) = P(7) HY (HP@E) H + R(t) ) (10)
X = X6 + K@) [m — W [x(E), & 1] (12)
P(6") = P67 + K(&) H [t X(6)] PE) (12)

In the extrapolation step (eq. 8 and 9) the system and
corresponding error models are integrated from the ac-
tual point in time () to the next one (fi+1). After having

»~ received the new measurement values, the innovation is

performed (egs. 10 to 12), yielding the best estimate for
the system state at time (i ), which is in turn the basis for
the next filter step.

Up to now, low cost microprocessor hardware is too slow
for implementing the complete algorithm on a single unit
in real-time. In order to reach real-time performance
despite these difficulties, some steps have been investi-
gated in order to split the algorithm from one set for 12
vector components into 2 sets indexed L and S for 6
vector components each running on parallel processors.
Sincg the amount of computation needed is proportional
to n3, this reduces the computation time needed to 12.5
%. Finally, real-time performance has been achieved by
substituting in the seperated equation (9) the following
terms:

ti+1 .

[PLQue BEar = QL (13)
t

i1

J®s Qs(r) P ar 2Qs (14)

ti

This allows to also split egs. 9 to 12 into two sets resulting
in two decoupled systems for the aircraft motion (fig. 4).

nonlinear extrapolation of the full state vector

W) =% + [ :H'lf[;(t, &), u(t), £ dt

e

longitudinal motion lateral motion
PL(ti+1) = PLPLOL +Qu | Ps(tir1) = PsPsD? +Qs
KL(6) = ... Ks(t) = .......
) S e () = o
PL() = ..o Ps(t’) = .....

Fig. 4: Splitting the filter algorithm into two seperated
parts

These seperate main parts have been implemented on
two different processors and run in parallel. For addi-
tional speedup, the sequential algorithm of Bierman has
been used [12]. With this, the crucial step to real-time
with At = 60 ms cycle time was achieved. By sticking to
the nonlinear extrapolation for the system state, no
knowledge about the system is lost.

The bulk of the measurement vector consists of optical
features which are extracted from a single image
delivered by a video camera. The rest of the measure-
ments are inertial values obtained by gyros fixed to the
aircraft. As indicated in section 3, a feature is a linearly
extended intensity gradient within the runway plane. It is
extracted by controlled correlation with ternary masks on
the runway borderlines and on the horizon along special
search paths [3]. The feature extraction algorithms are
implemented on different parallel processors PPi in the
image processing system BVV (see fig. 5), where one
processor analyzes two features within 40 ms. In this
approach maximally ten features are used per cycle pre-
sently (fig. 3).

5. Hardware

The main part of the underlying hardware is the image
processing system BVV, developed at the Universitit der
Bundeswehr Munich [5, 7]. The BVV is a multi-processor
system in which the different processors can communi-
cate via a common system bus. Each pixel processor PPi
(Intel 80286) has access to the video image from a CCD
camera via a video bus and an ADC (fig. 5).

[Camera § [ 7]
| Host | flrmlnn! I
{Camera 2 7]

Multibus-{
N AL ¥
PR Laai]
VBA VEA
Videobus-2 {T \
0}
0] o
2
J l:—-—
Fig. 5: Multi-processor system BVV (from [3])

Videobus-1

The object processors OPi (80386) run the recursive
estimation algorithms based on the ’Gestalt’ idea of a
perspectively mapped runway and the dynamical models,
exploiting the feature data in conjunction.

Integrated into the BVV is the controller for the two-axis
platform (ZPP). The host for the image processing sys-
tem is a PC; both are connected by an TEC-bus. The PC
is used only for initialization, as a link to the integrated
computer of the airplane, and for data collection and
final evaluation. For visual control of the process, a video

monitor and a video recorder have been integrated (fig.
6).
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Fig. 6: Hardware architecture
6. Harware-in-the-loop (HIL) simulation

Primary results have been achieved in a hardware-in-the-
loop simulation, which was especially built for investiga-
tions and developments in the field of image processing
[10]. Real sensing and processing components may be
integrated into this loop. The dynamics of the airplane
and its view onto the runway can be simulated by a
three-axis rotational motion simulator (DBS) and a
graphics system (SGI 4D). The integration of the non-
linear equations of motion is done by a digital computer
which controls the other simulation facilities too (fig. 7).

For the simulations within the entire flight envelope, a
complete state feedback controller has been developed
with the latest theory of linear quadratic design with
prescribed eigenstructures [11]. With this method, the
Riccatti design is combined with the pole placement and
eigencevtor specification, thus allowing to use the advan-
tages of both methods. The nominal trajectory to be flown
in 3D-space and time is given in fig, 8.
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Fig. 7: Harware-in-the-loop-simulation
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The advantage of HIL -simulation is, that on the one hand
all sensors and data evaluation electronics (with their dirt
effects, hard to be modelled), can be included in the
investigation, but that on the other hand so called *ground
truth’ data for the evaluation of system performance are
readily available, since they are part of the numerical
simulation. This type of simulator is widespread for both
automatic guided weapon simulation and for pilot train-
ing; in dynamic vision, especially in the field of artificial
intelligence, it is almost never used up to now. However,
in several applications investigated at our institute it has

proven to be a valuable tool for efficient software and
system development in this area also. With the interfaces
between modules designed in the same way as they are in
the flight hardware, the preparations for real flight tests

on the remote airfield in Braunschweig could be kept to
a minimum,

Especially in the area of testing feedback control laws
with respect to wind and gust responses, the well defined
and easily repeatable disturbances in simulation have

definite advantages over the irregular, nonrecurring ones
in the real world.

Fig. 8: Nominal trajectory shape

7. Test results

Closed loop performance with active control by the auto-
matic visual guidance system could only be done in the
simulation loop, since the airplane available from the
Technical University Braunschweig did not have com-
puter controllable actnators.

7.1 Closed-loop HIL-simulation results

The original flight hardware included in the simulation
was: The CCD-TV-camera mounted on a two-axis (pan
and tilt) platform for viewing direction control with angu-
lar rate feedback for inertial stabilization, the image
sequence processing system BVV_2 as discussed in sec-
tion 5, and the host-PC (80386) for system initialisation
and data logging. Aircraft angular motion was realized by
the DBS motion simulator for testing the viewing direc-
tion control platform; the inertial sensors in the aircraft
have been simulated on the computer, however.

Wind effects have been incorporated by adding a
(lateral) cross-wind component of -1 m/s starting at 800
m in front of the runway threshold; at 650 m an exponen-
tially decreasing gust with a vertical component of 1 m/s
and a cross-wind component of 2 m/s has been superim-
posed on the wind; the time constant of the gust was 6 s.

The simulation started at 950 m in front of the landing
strip with a velocity of 50 m/s at an altitude of about 51
m; it ended at about 550 m down the runway with touch
down of the landimg gear. The ensuing transition to
taxying has not been investigated, since a completely
different dynamical model would have been required
both for state estimation and for control. It should be
noted, however, that the vision sensor is well suited for



vehicle guidance both in this and the following ground
roll guidance task along the taxyways. The capability of
performing these tasks has been demonstrated in essence
with our road vehicle guidance program [2, 3, 5].

At about 250 m in front of the runway threshold the
engines are throttled and the aircraft starts slowing down
towards 43 m/s at touch-down; at the same time, the
elevator is pulled in order to initiate the vertical flare
decelerating vertical speed exponentially towards zero.
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Fig. 9: Roll angle in degree

As long as the runway threshold is visible, the distance to
it is estimated within 5 m accuracy; after loosing the
threshold out of sight at about 120 m distance from it,
range x is merely predicted according to the model. The
end of the runway can not be measured accurately
enough from this low altitude to be of any use. Altitude
above the runway could be estimated to within 1 m during
approach and to less than half a meter over the runway;
a rather large error briefly occurred during flare onset.
This was due to the delay in the tilt viewing direction
control loop at the sudden pitch rate change; it rather
soon disappeared again.

The controller designed consists of a full state vector
feedback with additional integral components for speed

and altitude, for which a strict time history profile is
essential during landing approach. The effect of the ver-
tical gust component is hardly noticeable in the trajectory
flown.
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Fig. 10: Yaw angle in degree

In the lateral degrees of freedom the maneuver started
with a lateral offset from the runway centerline of 85 m
at 950 m distance and a heading error of 15 degrees
towards the centerline. Within half a kilometer the lateral
offset was reduced to less than 5 m, and within 0.75 km
the heading angle settled at about 2 degrees relative to
the runway, apparently mainly for crosswind compensa-
tion. During the initial maneuver, roll angles of up to 8
degrees occurred; the estimation errors in both roll and
yaw angles were always less than one degree in magnitude
(fig. 9, 10). The lateral gust induced an estimation error
in lateral position of about 3 m for a short time; otherwise
it was always less than one meter soon after initialisation
(fig. 11). By adding another Kalman filter for runway
width estimation the system was improved to be able to
deal with not exactly known runway parameters; a 29 m
wide runway could be validated to within 1 m accuracy.
When the runway threshold was lost out of sight due to
the close approach, the average estimated value was
within 0.4 m of the true one.
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Fig 11: Lateral offset y to the middle of the runway in
meter

7.2 Flight test results in relative state estimation

Alter having gathered fundamental experience in simu-
lation, test flights have been performed with the twin-
turboprop airplane Do 128 of the University of Braun-
schweig. For evaluation of the accuracy of the optical
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Fig.12a: a) optical b) GPS system

deltz x [m)
50,0 mmm e e
l 1 [ 1 1 1
bl Loy St {— [ | B ot |
| Y ||| E R (e ST NSRSt IPPTTIr
- | ] [ I 1 1
' s i e | Sty = 1 IRy

okl o [ I W FIm
10.0 %@ | | }#ﬁ}%‘ _ﬂﬁ Rﬁiigk
o H--Mo- THLR- .
| 1 | |
SYSCR LY ML LA
~20.0 SR T 1.2 N - [l S S
1 1 [ I | 1
~30.0 ks bnstaleia i T | DI RS T
“40.0 |=m-mdecccda el nn e | B e, e e |
i i ] 1 | '
=50.0
0. 5. 10, 15. 20. 25, 0.
Zait [sac]

Fig.12b: Difference between optical and GPS system

Fig. 12: Distance to the runway x in meter

results, a differential GPS system recorded the flight data
in parallel to the optical system. The results in the trans-
lational degrees of freedom are given in fig. 12 to 14,
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Fig.13a: a) optical b) GPS system
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Fig 13: Lateral offset y to the middle of the runway in
meter



It can be seen clearly from fig. 13, that the optical evalua-
tion process is getting better the nearer the airplane
approaches the runway. The reason is, that the image of
the runway is getting larger and the optical measurement
values become better. For the evaluation of the altitude,
the results of the GPS system showed errors. For com-
parison, a radiometric altitude-above-ground measure-
ment system was used in addition, in order to record this
value too.
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Fig.14: Altitude in meter a) optical b) GPS c) radio-
metric

In order to even allow approaches to airports, for which
the width of the runway is not known, an additive Kalman
Filter was used to estimate this value. The width of the
runway in Braunschweig is 29 m (difference between the
white lane markings). Fig. 15 shows the result of the
estimation, where the mean value estimated till about 200
m distance and 20 m elevation relative to the runway
threshold is 29.1 m. After having lost this line within the

image, the estimation is stopped and the mean value is
taken.
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Fig. 15: Estimated runway width

8. Conclusion

Taking advantage of both spatial and temporal models for
motion processes of objects, today’s microprocessors,
already, allow real-time image sequence processing, dy-
namic scene understanding and visual motion control in
visually not too complex scenes in the 10 to 30 Hz range.
The powerful microprocessors of the near future (200
MIPS-class), interconnected by high data rate com-
munication networks, will enable the sense of vision for
machines in well structured environments.

The method developed for video image sequence evalua-
tion in the optical range may easily be adapted to other
sensors like infrared, low-light-level TV or even imaging
radar. With these, night vision or all-weather visual capa-
bilities may become possible.

Combining visual and inertial sensor data evaluation has
complementary beneficial effects: motion blur at high
angular rates will deteriorate image processing; high
rates, however, can easily be measured inertially at low
cost. Inertial sensors become expensive when they have
to be trimmed to long term stability. Static references for
long term stabilization, however, can be measured easily
by image processing, once the sensors have been roughly
stabilized inertially. Therefore, good overall perform-
ance at low cost may be expected by a proper combina-
tion of both sensors.

A similarly beneficial effect may be achieved for naviga-
tion by combining vision with GPS: The latter provides a
rough estimate of geographic coordinates, so that an
intelligent vehicle capable of visual landmark navigation
can start its visual search for landmarks in a rather small
search area; accurate position determination relative to
the landmark may then be achieved by visual tracking
over time taking models for the ego-motion into account.

This new technology will allow autonomous on-board

navigation and control capabilities unachievable up to
now.

Fully autonomous control in a landing approach till
touch-down has been demonstrated in a hardware-in-
the-loop simulation in real time (16 Hz) including wind
and moderate gusts. The same hard- and software has
been installed m a twin-turboprop aircraft; within five
days of testing, first results in relative state estimation
during manually flown landing approaches have been
obtained. These results compare well to differential GPS
and radio altimeter results for the same flights.
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