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Abstract
This article presents a system for hybrid adaptive cruise
control (HACC) on high speed roads designed as a combi-
nation of a radar-based ACC and visual perception. The
system is conceived to run on different performance levels
depending on the perception abilities. The advantages of a
combination of the two sensor types are discussed in com-
parison to the shortcomings of each single sensor type. A
description of the visual lane detection and tracking pro-
cedure is given, followed by an overview of the vehicle
detection, hypothesis generation and tracking procedure.
Afterwards, the assignment of vehicles to lanes and the
determination of the relevant vehicle for the longitudinal
controller is described.

Keywords road recognition, vehicle recognition, dy-
namic machine vision, adaptive cruise control

1 Introduction
Many automobile firms put great effort into the develop-
ment of driver assistance and comfort systems like lane
departure warning, stop-and-go traffic assistance, convoy
driving or adaptive cruise control (ACC). Unfortunatly,
these efforts mostly result in independent solutions for
each task which do not communicate their knowledge
among each other.

The EMS1-Vision system of UBM bundles the informa-
tion different experts extract from sensor data and makes
it available for all other experts. As a spin-off of the over-
all system architecture [1], UBM designed, in cooperation
with an automotive supplier2, a system for hybrid adaptive
cruise control. It is a combination of a radar-based ACC
system and visual perception for vehicle as well as lane
detection and tracking.

1Expectation-based Multi-focal Saccadic
2We thank our project partner, especially T. Müller, for supplying their

profound knowledge on radar-based ACC to the project.

2 System Specification
This HACC system is meant for motorways and similar
roads with white lane markings on both sides of all lanes.
This is a wellknown domain where the expected obstacles
are restricted to road vehicles. The own car (Ego) shall be
driven manually in the lateral direction and is controlled
autonomously in the longitudinal direction. It is in the
driver’s responsibility to choose the lane of the road and
he has to decide whether to overtake or not. A desired
speed is set by the human driver, the computer controls
the velocity of the car in such a manner, that a specified
safety distance to other vehicles (OV) is kept and the dif-
ference between the desired and the actual velocity is as
small as possible. E.g. if there is another vehicle in front
of the Ego driving with a velocity slower than the desired
speed, the Ego slows down and follows with the speed of
the leading car. The accelerations commanded by the ve-
locity controller are restricted to a level, that the passen-
gers feel comfortable. The safety distance to the OV ahead
shall not be smaller than e.g 1:6sec � velocity of the OV.
The driver can overrule the HACC system at any time. The
HACC is a comfort system, not a security system. The
maximal pressure of the braking system the HACC may
command is limited to an acceleration of �2:5m=s2. That
implies that the HACC is not able to command emergency
braking. The driver always has to be aware of the traffic
situation. He is legally responsible for all actions of the
car.

3 Scalable Performance
The system designed is able to operate at different perfor-
mance levels as depicted in figure 1. The initial system
status is given when no cruise control is active, the human
driver himself controls the velocity and the heading direc-
tion.

A first performance step is that the conventional radar-
based ACC system is activated. The decision whether an



OV might be relevant, which means driving ahead of the
Ego in the own lane with a velocity smaller than that of
the Ego, is made using the so called driving tube. This
driving tube is fixed parallel to the longitudinal axis of the
Ego. Its curvature is estimated from the relative speeds of
the 4 wheels using ABS-sensor signals. The system has no
knowledge about the relative position to the real lanes.

A second performance step is that the OV hypotheses gen-
erated by the radar module are validated by vision and the
lateral positions relative to the Ego as well as the dimen-
sions of the OVs are determined. If the validation is suc-
cessful, the OVs are inserted into the scene tree as the cen-
tral knowledge representation scheme for physical objects
in the system (see Chapter 6). All objects are tracked by
vision.

The third performance step is the additional detection and
tracking of the own lane and the assignment of the vali-
dated OVs to a lane (the own and the two adjoining lanes).

A forth performance step could be to follow a lane com-
pletely autonomous. This step was not in the scope of the
project, but is a standard ability in UBM’s system.
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Figure 1: Scalable performance steps
ACC = radar-based Adaptive Cruise Control, VVT = visual
Vehicle Validation and Tracking, RDT = Road Detection
and Tracking, LF = Lane Follow

The desired performance level is set by the driver via the
human machine interface (HMI). In figure 1 the transi-
tions Txx between the different performance levels stand
for conditions which have to be met for a performance
level change. T01 has to check whether the radar module is
ready to perform the ACC task. Transition T12 verifies that
vision is present and the VVT process is already delivering
data. Transition T23 checks whether automatic lane de-
tection is completed and the RDT process tracks the lane.
If the RDT process stops tracking and starts a new auto-
matic detection of the lane while the system is running at
performance level 3, the system changes via transition T32
to level 2 until T23 is fulfilled. If the weather or lighting
conditions are not suitable for vision, the system changes
via T21 or T31 to performance level 1. If the radar is not
active or the driver overrules the computer, the system al-
ways changes via T0 to performance level 0. If the desired

performance level is 4 the system can change via T34 to
level 4 and may end the autonomous mode via T40 if the
ACC is not active, the driver overrules the system or lane
tracking fails.

4 Sensor Properties
The reason for a combination of a radar-based ACC with
a vision system is to overcome the shortcomings of a pure
radar-based ACC system and of a pure vision-based ACC
as well. Shortcomings for the radar system are:

� Reflections on crash barriers can lead to false alarms.

� Two vehicles driving side by side with nearly the same
speed are hardly distinguishable and may appear as
only one obstacle, which is assigned to one lane. That
means a vehicle or motorcycle beside a truck can be
invisible for the radar.

� The determination of the lateral position of a vehicle
relative to the Ego is considerably less precise than of
the logitudinal distance.

� The own position and the relative positions of the OVs
have no reference to the real lanes. This makes the
decision whether an obstacle is relevant or not very
difficult, especially at larger distances. The risk of
false alarms is high.

� The radar-based ACC used suppresses vehicles with a
velocity slower than a threshold value and oncoming
traffic for vehicle hypothesis generation. A so tuned
conventional ACC system is not able to handle stop-
and-go traffic.

On the other hand

� a radar system is independent of weather and lighting
conditions.

� The determination of the distances and relative veloc-
ities to OVs is very precise.

Advantages of the vision system are the ability to:

� determine the lateral positions of OVs relative to the
Ego with high accuracy;

� determine the dimensions/shapes of OVs. This en-
ables classification of obstacles and to make a model-
based prediction of its possible behavior;

� detect and track the own lane.

As a consequence it is possible to:



� determine the shape of the own lane;

� determine the position of the Ego relative to the own
lane;

� recognize a lane change depending on the yaw angle
and horizontal offset of the Ego´s center of gravity
(CG) relative to the center of the lane;

� determine the positions of OVs relative to the own
lane.

The drawbacks are:

� Measurement results depend on the weather and light-
ing conditions.

� A vision only ACC has difficulties in determining
the distances to OVs in longitudinal direction, be-
cause range information is lost in perspective projec-
tion. Consequently, it is rather difficult to get a precise
value for the relative velocity.

Radar and vision have complementary properties. A com-
bination of both leads to better overall system performance.

5 Sensors and Hardware used
As experimental platform UBM´s Mercedes 500 SEL,
dubbed VaMP, is used. See figure 2 and [1].

Figure 2: Experimental vehicle VaMP

For this project, the vehicle has been equipped with a radar
system, which is attached to the center of the front bumper.
It has one radar club with a viewing angle of �4Æ, and it is
able to measure the relative velocity and distance to other
vehicles in a range from 2 to 130 meters with an accuracy
of �1:5m. The radar-based ACC module uses data of the
ABS-sensors to calulate the curvature of the trajectory of
the own vehicle.

The system is able to observe the environment in front of
the car with several cameras, which are mounted on a pan

camera platform. From this MarVEye camera configura-
tion [1] only the video data of the high sensitive black-and-
white camera and the intensity signal of the 3-chip color
camera are evaluated. The platform is not active. This bi-
focal camera configuration is equipped with an 8mm lens
on the 1=2” chip b/w-camera (wide-angle) and a 25mm
lens on the 1/3” 3-chip color camera (tele), which corre-
sponds to a 37:5mm lens on a 1/2” chip camera. For image
processing each second field (half image) is taken with a
resolution of 768x286 pixels every 40msec.

Only one of the 3 image processing PCs available in the
whole system is used for the vision tasks here. On this
computer (comp2) the VVT, the RDT and the Radar pro-
cess are running. See figure 3. The Radar process is the in-
terface to the radar hardware. The actuators get their com-
mands via the controller PC (comp1) where the locomotion
expert is running (for details see [1]).

6 Scene tree
The scene tree is the internal representation of the outside
world. All nodes of the scene tree represent physical ob-
jects or virtual coordinate systems. The transformations
between scene nodes are described by homogeneous coor-
dinate transformations (HCT). HCTs can be used for de-
scribing the relative pose (6 degrees of freedom = 6DOF)
between physical objects as well as for perspective projec-
tion into the image coordinate systems. For details see [1].
In figure 3, the connections between the scene representa-
tion, the processes and the computers used are depicted.
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Figure 3: EMS-Vision data bases: hybrid adaptive cruise
control

7 Overview of Lane Detection and Tracking
Lane detection and tracking uses horizontal search win-
dows to extract lane markings from grey-level images.
Lane markings are characterized by dark-bright-dark grey-
level transitions which match an expected width and ori-
entation at expected positions. The expected positions



and orientations of the lane markings are calculated from
timestep to timestep using a 3D-model of the lane which
is projected into the image plane. The differences between
the measured and the expected positions are taken to inno-
vate the 3D-model. In order to initalize the tracking pro-
cess, a setup phase is necessary first. Lane markings are de-
tected by extracting their edges. Therefore the correlations
between ternary masks of the kind [-1,-1,-1,0,+1,+1,+1]
and the grey-level values along the search paths are cal-
culated. A grey-level transition from dark to bright results
in a maximum, and from bright to dark in a minimum cor-
relation value. For the decision on a max or min, a suit-
able grey-level threshold has to be found first. Therefore,
the value for a threshold is successively decreased until
enough maxima and minima are found and the threshold
is larger than an allowed minimal value. Hence, two re-
gression lines through the left and right lane markings are
calculated. This is done using the image of the wide-angle
camera only, because on motorways and similar roads the
influence of lane curvature is negligible at near distances
(6-30m). Under the assumptions that the postion of the
Ego relative to a lane has a horizontal offset smaller than
half the lane width and a yaw angle smaller e.g. 5 degree,
the following items are calulated from the regression lines:

� the horizontal offset of the Ego´s CG relative to the
skeleton line (center of the lane),

� the yaw angle between the longitudinal axis of the
Ego and the tangent at the skeleton line measured at
the CG as well as

� the lane width.

These first approximations are taken as starting values for
the Extended Kalman Filter (EKF). During this automatic
lane detection the driving tube is used for the decision on
the relevance of OVs. The lane geometry is described by a
moving average clothoid model. For details see [2] or [3].
The state variables which are estimated by the EKF can be
differentiated in two kinds:

� The shape parameters of the model, which are the hor-
izontal and vertical curvature, the changes in horizon-
tal and vertical curvature, the lane width and change
in lane width along the lane.

� The position parameters, which are the horizontal off-
set of the CG of the Ego to the skeleton line, the yaw
angle and the pitch angle of the vehicle body relative
to the lane.

By successively increasing the lookahead distance from
near to far distances, the model reliably approaches the
real lane markings by determining their curvatures. In the

wide-angle image, the search windows are set in a man-
ner, that the lookahead distance in 3D-space ranges from
6 to 40m, and for the tele-image from 30 to 100m. If the
number of extracted features in the tele-image is less than
a certain minimal number for several cycles, the lookahead
distance is shortened and afterwards successively extended
from near to far. This increases the robustness of lane
tracking.

Before feature extraction is started, all search windows
are checked whether a vehicle obscures the expected lane
markings. To do this, the bounding box for each OV is
tested whether it intersects with any search window. If an
intersection exists, the search window is clipped (figure 4).
If the resulting search path is too short this measurement is
disabled.

Figure 4: Clipping of search windows using bounding
boxes of OVs

8 Vehicle Detection, Hypothesis Generation
and Tracking

In order to control the velocity of the Ego correctly, the
HACC system has to detect all vehicles, which are poten-
tial obstacles. New vehicle hypotheses are generated by
evaluating the radar measurements. Within the radar mod-
ule a preprocessing of the radar measurements takes place
where reflections with a similar distance, relative velocity
and amplitude are grouped together. The radar system cre-
ates a list of potential vehicles every 60msec. These mea-
surements first have to be assigned to the existing OV hy-
potheses of the scene tree. This is accomplished by defin-
ing a capture area around each OV hypothesis and assign-
ing all radar measurements to it which lie within it (details
see [4]). The existing vehicle hypotheses are sorted with
respect to the distance from Ego. Then, the angular range
covered by each vehicle hypothesis is calculated, and the
radar measurements left over are checked whether they lie
in such an area with a larger distance than the correspond-



ing vehicle hypothesis. If this is true, the measurement is
rejected. Remaining radar measurements, which could not
be assigned to an existing vehicle hypothesis or occlusion
area, are candidates for new vehicle hypotheses. These are
checked by vision. If the validation is successful, a new
vehicle hypothesis is added to the scene tree. If a hypothe-
sis is not updated neither by radar nor by vision for several
cycles it is removed from the scene tree. All vehicle hy-
potheses in the scene tree are tracked.

At the position of a candidate for a new vehicle hypothesis
a box model is initialized to fit the shape of the potential
vehicle. The orientation of the box in 3D is assumed to be
parallel to the lane at this distance. Depending on the yaw
angle relative to the Ego the length or the width of the box
is estimated. Furthermore, the lateral position and lateral
velocity, the longitudinal position, speed and acceleration
is estimated via EKF for each OV (for details see [4]).

9 Vehicle of Relevance
In order to decide which object is relevant for the longi-
tudinal controller, it is substantial to determine the posi-
tions and the future behavior of other vehicles relative to
the Ego. The relevance decision is made with the implicit
assumption that OVs keep their lane most of the time, by
assigning them to the lanes of the road.

The pure radar-based ACC system (performance level one)
can only use the driving tube for the relevance decision.
The driving tube is fixed with the longitudinal axis of the
own vehicle. Its only parameter is the curvature which is
calculated from the speeds of the 4 wheels measured with
the ABS-sensors. It has no reference to the real lane geom-
etry. See figure 5.

Figure 5: Driving tube (bright overlay) and lane model
(dark) while the Ego is driving near the right border of the
lane, but still inside the lane

Movements inside the lane result in an alternating curva-

ture of the driving tube. To reduce this behavior, the curva-
ture of the driving tube is calculated by lowpass filtering.
As a consequence, the driving tube lags behind or over-
shoots the value of the real lane curvature if the steering
angle changes strongly. The decision for relevance using
the driving tube easily leads to false alarms, especially at
far distances. E.g. if the Ego passes a vehicle in a left
curved lane, it could become the relevant vehicle if the
driving tube changes its curvature because of steering an-
gle perturbations of the Ego within the lane.

Figure 6 shows the driving tube and the lane model dur-
ing a lane change. It can be seen, that at near distances
(6�30m) on high speed roads the driving tube can be ap-
proximated by a straight lane, because the curvature has
nearly no influence. At far distances a relevance decision
based on the driving tube would definitely be wrong.

Figure 6: Driving tube and lane model while performing a
lane change

In contrast, the visual lane detection and tracking process
is able to calculate the position of the Ego relative to the
lane with 6DOF and is able to determine the shape param-
eters of the lane. For the assignment of OVs to the lanes
and the decision of their relevance, three cases can be dif-
ferentiated:

1. Ego is driving inside the own lane and no lane change
is indicated or assumed.

2. Ego is driving inside the own lane and a lane change
to the left is assumed or notified by the left indicator.

3. Ego is driving inside the own lane and a lane change to
the right is assumed or notified by the right indicator.

The detection of a lane change can be done by observing
the yaw-angle and the horizontal offset of the Ego. If the
predicted horizontal offset of the Ego at a lookahead dis-



tance of 10m is larger than 60% of the lane width, a lane
change is assumed.

In case 1 the relevance decision area (RDA) is identical to
the current own lane. See figure 7a. A vehicle will be as-
signed to the own lane if the horizontal offset is smaller
than half the width of the lane. If a vehicle is already as-
signed to the own lane, it is associated with it as long as the
horizontal offset is smaller than half the width of the lane
plus half the width of the vehicle.

During a lane change it is reasonable to hang on to the cur-
rent own lane for lane tracking until the CG has a horizon-
tal offset larger than half the lane width and then to change
the tracked lane. But performing the relevance decision
with respect to the current lane will not lead to satisfactory
behavior, because the Ego will leave the lane within a short
time. During and after the lane change its velocity has to
be controlled in consideration of the vehicles in the desired
lane.

a)

b)

c)

Figure 7: Relevance decision area as function of the hori-
zontal offset

Normally, an overtake maneuver (case 2) is performed for
driving faster than in the current lane. In order to overtake,
a strong acceleration is needed at the beginning of the ma-
neuver. Therefore, human drivers mostly accept a safety
distance shorter than otherwise chosen. That means, in-
creasing the velocity is performed by decreasing the safety
distance in the current lane. The switch for the left indi-
cator could be used for starting acceleration by shortening
the allowed safety distance to the leading vehicle.

Simultaneously, the RDA should be extended to the desired
lane. Its width in the current lane should be successively

decreased as function of the horizontal offset. See figure
7b. As long as the CG of the Ego is inside the current own
lane, the width of the RDA ranges from that part of the own
lane, which is still covered by the vehicle shape, over the
complete width of the desired lane. The RDA´s trajectory
is parallel to the skeleton line of the current lane. If the hor-
izontal offset of the Ego is larger than half the lane width,
the new lane becomes the own lane and the RDA becomes
identical to the new own lane. See figure 7c. Case 3 is
nearly the same as case 2, but no acceleration by shorten-
ing the safety distance in the current lane is allowed.

Afterwards, all OVs are sorted according to their distance
to the Ego and only the nearest OV within the RDA is set
to be relevant. The velocity and distance to the relevant
other vehicle is communicated to the longitudinal vehicle
controller adjusting the speed of the Ego in a way that the
convoy distance is larger than a desired value, e.g. 1:6sec �
vrelevant OV.

10 Conclusions and Outlook
It has been shown that the combination of radar and vision
leads to a system with enhanced performance capable of
handling several tasks jointly using a common knowledge
base. The system can select an appropriate performance
mode depending on the hardware status or the performance
of the experts. Monitoring the performance of the vision
experts takes the weather and lighting conditions implicitly
into account. Lane departure warning can easily be per-
formed using the knowledge about the position of the Ego
relative to the own lane. Convoy driving using activated
lateral control is possible with this system if the speed of
the leading car is sufficently large such that it is not sup-
pressed by radar measurement preprocessing. For speeds
slower than that, first experiments are being made using
trinocular stereovision for handling stop-and-go traffic (for
details see [4]).
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