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Abstract: A stripe-based image evaluation scheme for real-time vision has been developed allowing efficient detection 
of the following classes of features: 1. ‘Nonplanarity’ feature for separating image regions treatable by 
planar shading models from the rest containing textured regions and corners; 2. edges and 3. smoothly 
shaded regions between edges, and 4. corners for stable 2-D feature tracking. All these features are detected 
by evaluating receptive fields (masks) with four mask elements shifted through stripes, both in row and 
column direction. Efficiency stems from re-use of intermediate results in mask elements in neighboring 
stripes and from coordinated use of these results in different feature extractors. Corner detection with 
compute-intensive algorithms can be confined to a small (but highly likely) fraction of the images exploiting 
the efficient nonplanarity feature. Application to road scenes is discussed.  

1 INTRODUCTION 

Computing power per microprocessors keeps 
increasing at an almost constant rate of one order of 
magnitude every 4 to 5 years. This allows combining 
algorithms even for real-time vision which have 
been developed for separate use some time ago. The 
goal of the combined image evaluation method 
presented here is: 1. to start from as few assumptions 
on intensity distributions in image sequences as 
possible, and 2. to re-use as many intermediate 
results as possible. A rich feature set allows better 
real-time understanding of dynamic scenes. Since 
pixel-noise is an important factor in outdoor 
environments, some kind of smoothing has to be 
taken into account. This is done by fitting a planar 
intensity distribution model to a local image region 
if it exhibits some smoothness conditions; otherwise 
the region will be characterized as non-
homogeneous. Surprisingly, it has turned out that the 
planarity check for local intensity distribution itself 
constitutes a nice feature for region segmentation. 

Processing images in sequences of stripes allows 
systematic re-use of intermediate results and 
provides a nice scheme for navigation in feature 
arrays for object recognition on higher system levels 
(not detailed here). Most of the elementary methods 

for feature extraction are not new; the reader not 
acquainted with these methods can find an extensive 
bibliography including text books in (Price K, USC, 
Vision – Notes, bibliography, especially chapters 6 
to 8). Exploiting the new “nonplanarity feature”, 
they are combined in a very efficient manner. For 
the same reason of efficiency, an image scaling stage 
has been put upfront in which pixel intensities are 
averaged over rectangular regions called ‘cells’ of 
size mc·nc. These form the base for image 
interpretation; image pyramid levels are subsumed 
by the special case mc = nc= 2. 

2 STRIPE SELECTION AND 
DECOMPOSITION INTO 
ELEMENTARY BLOCKS 

The field size for the least-squares fit of a planar 
pixel-intensity model is (2·m) by (2·n), and is called 
the ‘model support region’ or mask region. For 
improving re-use of intermediate computational 
results, this support region is subdivided into basic 
(elementary) image regions (called mask elements 
or briefly ‘mels’) that can be defined by two 
numbers: The number of cells in stripe direction m, 
and normal to it (width of half-stripe) n. In figure 1, 
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m has been selected as 4 and n as 2; the total stripe 
width thus is 4, and the total mask region is 8·4 cells. 
For m = n = mc = nc= 1 the highest possible image 
resolution will be obtained, however, a rather strong 
influence of noise on the pixel level may show up in 
the results in this case.  

When working with video fields (sub-images 
with only odd or even row-indices as is often done 
in practical applications) it makes sense for 
horizontal stripes to chose m = 2·n; this yields pixel 
averaging at least in row direction for n = mc = nc= 1. 
Rendering these mels as squares, finally yields the 
original rectangular image shape with half the 
resolution of the original full-frame. Shifting stripe 
evaluation by half the stripe width only, all 
intermediate mel results in one half-stripe can be re-
used directly in the next stripe by just changing sign. 
The price to be paid for this convenience is that the 
results obtained have to be represented at the center 
point of the support region (mask) which is exactly 
at cell (pixel) boundaries. However, since sub-pixel 
accuracy is looked for anyway, this is of no concern.  
Still open is the question of how to proceed within a 
stripe. Figure 1 suggests taking steps equal to the 
length of a mel; this covers all pixels in stripe 

direction once and is very efficient. However, 
shifting mels by just one cell in stripe direction 
yields smoother (low-pass-filtered) results. For 
larger mel-lengths, intermediate computational 
results can be used as shown in figure 2, lower part. 
The new summed value for the next mel can be 
obtained by subtracting the value of the last column 
(j-2) and adding the one of the next column (j+2) in 
the example shown. Image evaluation progresses 
top-down and from left to right.  

The goal of the approach selected was to obtain 
an algorithm allowing easy adaptation to limited 
computing power onboard vehicles; since high 
resolution is required in a relatively small part of 
images only, in general in outdoor scenes, this 
region can be treated with more finely tuned 
parameters (foveal – peripheral differentiation).  

3 REDUCTION OF A STRIPE TO 
A VECTOR WITH ATTRIBUTES 

The first step in mel-computation is to sum up all n 
cell values in direction of the width of the half-stripe 
(lower part in figure 2). This reduces the half-stripe 
for search to a vector, irrespective of stripe width 
specified. It is represented in figure 2 by the bottom 
row (note the reduction in size at the boundaries). 
All further computations are based on these values 
which represent the average cell intensity at the 
location in the stripe when divided by the number of 
cells summed. However, these individual divisions 
are superfluous computations and can be spared; 
only the final results have to be scaled properly.  

The operations to be performed for gradient 
computation in horizontal and vertical direction are 
shown in the upper left and center part of figure 2. 
Summing two mel values (vertically in the left and 
horizontally in the center sub-figure) and subtracting 
the corresponding other two sums yields the 
difference in (average) intensities in horizontal and 
vertical direction of the support region. Dividing 
these numbers by the distances between the centers 

of the mels yields a measure of the (averaged) 
horizontal and vertical image intensity gradient at 
that location. Combining both results allows 
computing absolute gradient direction and 
magnitude. This corresponds to determining a local 
tangent plane to the image intensity distribution for 
each support region (mask) selected. 

However, it may not be meaningful to enforce a 
planar approximation if the intensities vary 
irregularly by a large amount. For example, in the 
mask of figure 3a) planar approximation does not 
make sense. It shows the situation with intensities as 
vectors above the center of each mel. For simplicity 
the vectors have been chosen of equal magnitude on 
the diagonals. The interpolating plane is indicated by 
the dotted lines; its origin is located at the top of the 
central vector representing the average intensity IM 
in the mask region. From the dots at the center of 
each mel in this plane it can be recognized that two 
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Figure 2: Mask elements (mels) for efficient 
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Figure 1: Stripe definition (rows, horizontal) in the 
operator ‘UBM2’ (cell-grid); mask elements (mels) 
are defined as basic units (Hofmann 2004). 
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diagonally adjacent vectors of average cell intensity 
are well above, respectively below the interpolating 
plane. This is typical for two corners (checkerboard) 
or a textured area (e.g. a saddle point).  

Figure 3b) represents a perfect (gray value) 
corner. Of course, the quadrant with the differing 
gray value may be located anywhere in the mask. In 
general, all gray values will differ from each other. 
The challenge is to find algorithms allowing 
reasonable separation of these feature types from 
regions fit for interpolation with planar shading 
models (lower part of figure 3) at low computational 
costs. The goal is to segment image stripes into 
regions with smooth shading, corner points, and 
extended non-homogeneous regions (textured areas). 
It will turn out that ‘nonplanarity’ is a new, easily 
computable feature on its own (see section 5). 
Corner points are of special value in tracking since 
they often allow determining optical feature flow in 
image sequences if robustly recognizable.  

Stripe regions fit for approximation by sequences 
of shading models are characterized by their average 
intensities and their intensity gradients. By 
interpolation of results from neighboring masks, 
extreme values of gradients including their 
orientation are determined to sub-pixel accuracy. 
Note that, contrary to the previous standard method 
KRONOS (Mysliwetz, 1990; Dickmanns Dirk, 1992) 
referred to here in the sequel as ‘UBM1’, no 
direction has to be specified in advance; the 
direction of the maximal gradient is a result of the 
interpolation process. For this reason the method 
UBM2 is called ‘direction-sensitive’ (instead of 
‘direction selective’ in the case of UBM1). It is 
therefore well suited for initial (strictly ‘bottom-up’) 
image analysis with the ‘Hofmann-operator’ 
(Hofmann, 2004), while UBM1 is very efficient once 
predominant edge directions in the image are known 
and their changes can be estimated by the 4-D 
approach (Dickmanns, Wuensche, 1999). 

4 INTERPOLATION OF AN 
INTENSITY PLANE IN A MASK  

Average image intensities Ic,ij within ‘cells’ of size 
mc· nc are assumed to have been computed 
beforehand. Cells are used to generate multiple scale 
images, like e.g. (2∗2) pyramid images of reduced 
size and resolution for efficient search of larger-
scale features. When working with video-fields, 
cells of size 2 in row and 1 in column direction will 
bring some smoothing in row direction and lead to 
much shorter image evaluation times. When coarse-
scale results are sufficient, as for example with high-
resolution images for regions nearby, cells of size 4 
by 2 efficiently yield scene characteristics for these 
regions, while for regions further away full 
resolution mc = nc= 1 can be applied in much 
reduced image areas; this focal – peripheral 
differentiation contributes to efficiency in image 
sequence evaluation. The region of evaluation at 
high-resolution may be directed by an attention 
focusing process on a higher system level based on 
results from a first coarse analysis (in the present or 
in previous images). Define Imel,sum,ij  as sum of m · n 
(average) cell intensities at location i, j in the mask 
and IM as average of these values  

, ,11 , ,12

, ,21 , ,22

(
) / 4

M mel sum mel sum

mel sum mel sum

I I I
I I
= + +

+
 (1) 

there follows for the four normalized mel-intensities 
in figure 2, top right: 

, , / .ij mel sum ij MI I I=  (2) 
Their sum adds up to 1. From sequences of these 
four numbers of order of magnitude ‘1’ the 
following features as symbolic descriptors for  
transition from image data to objects perceived is 
derived: : 1. ‘Planar shading’ models, 2. ‘edges’, 3. 
‘textured areas’ (nonplanar elements) and 4. 
‘corners’. 

Figure 4 shows the local gradients in row (index 
r) and column direction (index c) which play a 
central role in determining these features. The 
(normalized) gradients in a mask then are: 

1rf ( )12 11I I m= −      (upper row)   (3a) 

2rf ( )22 21I I m= −     (lower row)      (3b) 

1cf ( )21 11I I n= −      (left column)   (3c) 

 
2cf ( )22 12I I n= −    (right column) (3d) 

The global gradient components of the mask in row 
and column direction then are 

rf ( )1 2r rf f 2= +      (global row); (4a) 

IM 

a) b) 

c) d) 

Figure 3: Feature types detectable by the method 
‘UBM2’ in stripe analysis. 
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cf ( )1 2c cf f 2= +    (global column). (4b) 

The normalized global gradient and its angular 
orientation are obtained as 

2 2
r cg f f= +   and   ( )c rarctan f / fα = . (5) 

 
Adaptation of a planar shading model in mask 
area: The origin for the planar approximation 
function to the discrete intensity values (~ tangent 
plane) is chosen at the center of the mask area where 
all four mels meet. The model of the planar intensity 
approximation with the least sum of errors squared 
in the four mel-centers has the yet unknown values 
IC, gu and gv (intensity at the origin and gradients in 
u- and v-direction). According to this two-
dimensional linear model, the intensities at the mel-
centers are computed as functions of the unknown 
optimal parameters: 

11p 0 u v

12p 0 u v

21p 0 u v

22p 0 u v

I I g m / 2 g n / 2

I I g m / 2 g n / 2

I I g m / 2 g n / 2

I I g m / 2 g n / 2

= − −

= + −

= − +

= + +
 (6) 

Let the measured values from the image be 
 11 12 21I , I , Iµ µ µ  and 22I µ . Then the errors 

ije  = Iijp – Iijµ can be written:  (7) 

1111
0

1212
u

21 21
v

22 22

Ie 1 m / 2 n / 2
I Ie 1 m / 2 n / 2
g

e 1 m / 2 n / 2 I
g

e 1 m / 2 n / 2 I

µ

µ

µ

µ

⎡ ⎤= − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥= + − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎢ ⎥⎢ ⎥⎢ ⎥ = − +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦= + + ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
In order to minimize the sum of the errors squared, 
this is written in matrix form  

e A p Iµ= − . (8)

The sum of the errors squared is Te e  and shall 
be minimized by proper selection of  

[ ] T
0 u vI g g p= . (9) 

The well known solution via pseudo-inverse is 
T 1 Tp (A A) A I−

µ= ,  (10) 

which finally yields 

[ ] [ ]T TT
0 u v r cp I g g 1 f f= = . (11) 

 According to eqs. (1) and (2) the 1 as first 
component of p means that the origin of the 
interpolating plane with least squares error sum has 
to be chosen as the average intensity of the mask IM.  

5 RECOGNIZING TEXTURED 
REGIONS 

By substituting eq. (11) into (7), forming (e12 – e11) 
and (e22 – e21) as well as (e21 – e11) and (e22 – e12), 
and by summing and differencing the results, one 
finally obtains 

e21 = e12     and     e11 = e22 ; (12) 
this means that the errors on each diagonal are equal. 
With eqs. (1 and 7) the sum of all errors eij is zero. 
This means that the errors on the two diagonals have 
opposite signs, but their magnitudes are equal! 
These results allow an efficient combination of 
feature extraction algorithms by forming the four 
local gradients after eq. (3) and the two components 
of the gradient within the mask after eq. (4). All four 
errors of a planar shading model can thus be 
determined by just one of the four Eqs. (7), that is by 
2 multiplications and 4 additions/subtractions. The 
planar shading model is used when the residues are 

|eij| < εpl,max   (dubbed ‘MaxErr’). (13) 

From typical road scene images 96 to 99 % of all 
masks yield errors |eij| < 5 % and more than 99 % of 
all masks yield errors |eij| < 10 % (see Table 1 for 
detailed results). For the rest of the cases, different 
feature classes have to be applied; they cannot 
reasonably be approximated by planes. The 
threshold level MaxErr can be chosen from 
experience in the task domain and should be selected 
according to the amount of smoothing desired by the 
parameters m, n, mc and nc.  

It can be noticed from Table 1 that the number 
of non-planarity features in column search is usually 
much higher than in row search. Releasing the 
threshold MaxErr from 5 % to 7.5 % reduces the 
number of remaining nonplanarity features to less  

Figure 4: Intensity representations in mask region 
with four mask elements Iij; local gradients fkl . 
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than one half, in general. Note that 2½ % intensity 
corresponds to about 6 gray levels out of 256 (8 bit). 
Figure 5 shows results for the finest resolution 
possible, where a mask element is identical to a 
pixel (rows 1 and 2 in Table 1, images afterwards 
2:1 horizontally compressed). Comparing this case 
(1111) to the following one (3321) shows that the 
absolute number of non-planarity features is higher 
even though the number of mels is cut in half by the 
cell size mc = 2, nc = 1. Due to the averaging process 

over a larger area, apparently the local nonlinearity 
in the mask area has been increased (more pixels 
averaged).  

Figure 6 shows two ‘nonplanarity’ feature sets 
from both row- and column- search with error 
thresholds set to 5 and 7.5 % (cell size mc = 2, nc = 1, 
mel size 3·3, corresponding to rows 3 and 4 in Table 
1). The reduction in number of features is 
immediately recognized; the locations of occurrence 
remain almost the same, however. These are the 
regions where stable features for tracking, avoiding 
the aperture problem (sliding along edges) are more 
likely to be found. 

Since computing time decreases with the number 
of cells as basis for forming the mask elements, this 
means that nonplanarity features may be an efficient 

means for tracking points of interest even in reduced 
images. All significant corners for tracking are 
among the nonplanarity features. They can now be 
searched for with more involved methods, which 

however, have to be applied to a much reduced set 
of candidate image regions (a few percent only, see 
table 1 and section 8). 

Figure 7 shows results corresponding to row 6 of 
table 1; here, the image has been reduced first to the 
next higher (2·2) pyramid level, decreasing the 
number of cells to one fourth the number of pixels.  
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Then, the image is analyzed with stripe width 2 and 
mel size of 2·2 cells, corresponding to 4·4 pixels in 
one mel and 16·16 pixel in the total mask region of 
the original video field. As can be seen immediately, 
the regions of corner-type features for tracking 
without aperture problems are the same as for the 
fine resolution in figure 5; only the fine-grain 
corners are gone here. 

However, computing time with the large masks 
is reduced by more than one order of magnitude. At 
7.5 % error level the relative frequency of feature 
occurrence (in percent of mels) has increased. This 

 
 m, n, 
        mc, nc 

thresh. 
MaxErr  

% 

row search 
feature  |  % of 
number |  mels 

column search 
feature  | % of   
number |   mels 

 1  1  1  1 5 1 291 0.59 2 859 1.3  
 1  1  1  1 7.5    470 0.21 1 113 0.51 
 3  3  2  1 5 1 553 1.42 3 136 2.86 
 3  3  2  1 7.5    655 0.60  1 232 1.13 
 2  2  2  2 5    881 1.62 2 132 3.92 
 2  2  2  2 7.5    389 0.72  920 1.69 
 2  2  2  2 10    216 0.40    455 0.84 

Table 1: Statistical results of ‘nonplanarity’ features 
in a typical highway scene. 

Figure 5 ‘Nonplanarity’ features in original video-
field as function of threshold MaxErr (cell size mc= 1, 
nc= 1, mel size 1·1, finest possible resolution ~ 250 x 
740 pixel). Top MaxErr = 5 %; 1291 features in row-, 
2859 in column search (0.59 % resp. 1.3 % of pixels). 
Bottom MaxErr = 7.5 %; 470 features in row-, 1113 
in column search (0.214 % resp. 0.51 %). 

Figure 6: Distribution of ‘nonplanarity’ features in a 
typical highway scene. Left: threshold ErrMax = 5 
%; right: ErxrMax = 7.5 %. Results from row- and 
column-search are super-imposed (horizontal and 
vertical white line elements); cell size mc = 2, nc = 1, 
mel size 3*3.

 

Figure 7: Nonplanarity’ features on first pyramid 
level of original video-field (cell size mc = 2, nc = 2, 
yielding 125 x 370 cells). Mel size = 2*2 cells; even 
with these parameters, reducing  
computing time by more than an order of magnitude, 
the same image regions with stable features for 
tracking are found (on larger scales only). [Image 
compressed 2:1 horizontally after feature 
extraction.].% 

VISAPP 2006 - IMAGE ANALYSIS

202



 

gives a hint for efficient corner search: Find regions 
of interest on a larger scale first; then, for precise 
localization of these features, look with higher 
resolution in the regions found. The smaller corner 
features missed initially are likely to be less stable 
under varying aspect conditions. More experience 
with this approach in different real road scenes has 
to substantiate these suppositions. 

6 EDGES FROM GRADIENT 
COMPONENTS IN SEARCH 
DIRECTION 

During the planarity tests discussed above, the 
gradient values of the least squares fit to the 
intensity function in a mask region have been 
determined (eqs. 3, 4, 11). Edges are defined by 
extreme values of the gradient function in search 
direction. These can easily be detected by computing 
the differences of two consecutive values in search 
direction and by multiplying them. If the sign of the 
product is negative, an extreme value has been 
passed. With parabolic interpolation from the last 
three values, the location of the extreme value can 
be determined to sub-cell accuracy. This indicates 
that accuracy is not necessarily lost when cell sizes 
are larger than single pixels; if the signals are 
smooth (and they become smoother by averaging 
over cells) the locations of the extreme values may 
be determined to better than one tenth the cell size. 
Mel-sizes of several pixel in length and width 
(especially in search direction), therefore, are good 
candidates for efficient and fast determination of 
edge locations with this gradient method. Compared 
with other methods for edge extraction as separate 
algorithm it may not be the most efficient one; in 
combination with the extraction of the other features 
no comparable algorithm is known to the author.  

In order to eliminate noise effects from data, the 
absolute value of the maximum gradient found has 
to be larger than a threshold value; this admits only 
significant gradients as candidates for edges. The 
larger the mel-size, the smaller this threshold should 
be chosen. Proper threshold values for classes of 
problems have to be determined by experimentation; 
in the long run, the system should be capable of 
doing this on its own, given corresponding payoff 
functions. - Since edges oriented mainly in search 
direction are prone to larger errors, these can be 
excluded by limiting the ratio of the gradient 
components allowed. When both gradient 
components are equal in size, the edge direction is 
45°. Excluding all cases where 

|gz| < anglfacthor · |gy| in row search          (a); (14) 

|gy| < anglfactver · |gz| in column search    (b),     

with anglfact slightly smaller than 1, allows finding 
all edges by combined row and column search. 
(Close to diagonal edges should be detected in both 
search directions leading to redundancy for cross 
checking.) Sub-mel localization of edges is only 
performed when all threshold conditions are 
satisfied. The extreme value is found at that location 
where the derivative of the gradient is zero.  
Figure 8 shows one example of edge extraction with 
this method. By choosing proper parameters for 
mask size and threshold values for noise suppression 
good results can be achieved. The road area is 
almost free of edges; other objects are clearly 
marked, and the lane markings nicely show up. Even 
the mirror images of some objects on the motor hood 
of the test vehicle VaMP (Mercedes 500 SEL) are 
detected and marked (as well as the Mercedes star). 

7 SHADING MODELS IN 
STRIPES 

Space does not allow going into any detail here; an 
appreciation of what can be achieved in real time by 
a single modern PC-type processor may be gained 
from figure 9. The image part to the right shows part 
of the original video field; neglecting sky and own 
motor hood (bottom) the rectangular region marked 
white is analyzed as vertical stripe. In the left part of 
the figure, segmentation of the stripe is shown as 
image intensity over image row number (increasing 
from top to bottom like in video signals). The first 
large shaded segment around row 100 is part of the 
sky near the horizon; the right-hand half of the 
figure represents road area with two lane markings 

Figure 8: Edges from extreme values in gradient 
components in row- (white) and column search 
(black), [m = n = 3, mc = 2, nc = 1]. 
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as brighter regions. The MacAdam-surface of the 
left lane yields the largest segment with linear 
intensity shading. The centers and extensions as well 
as the brightness parameters of each segment are 

stored. 
This is done for each vertical stripe. In this way, 

intensity values of mels are transformed into lists of 
segment parameters. In the following step, 
neighboring areas are checked for merging edges 
and homogeneous regions into larger 2-D features. 
This yields extended straight edges and larger 
homogeneously shaded regions. From these data 
stored, the symbolically represented image can be 
reconstructed as real image to show the quality of 
the representation achieved (Hofmann, 2004).  

The challenge in real-time vision is to find the 
transition from the internal representation as 
symbols in image space to objects in physical 3-D 
space and time. Knowing the basic structure of 
highway scenes with lanes and other objects, 
hypotheses have to be generated with respect to: 
where the own vehicle is on the road, where the lane 
markings are (including the number and widths of 
lanes actually seen), and where there are other 
vehicles in the vicinity. A rich set of features 
alleviates this task. The 4-D approach to dynamic 
vision has been developed to solve this problem (for 
a survey see [Dickmanns and Wuensche 1999]; 
references to detailed descriptions of the approach in 
many dissertations are given there).  

8 THE CORNER ALGORITHM 

So-called 2-D-features designating image points 
have been studied since they allow avoiding the 
‘aperture problem’; it occurs for features in a plane 
that are well defined in one of the two degrees of 
freedom only, like edges. Since general texture 
analysis requires significantly more computing 
power not yet available for real-time applications in 
the general case right now, we will also concentrate 
on those points of interest which allow reliable 
recognition, tracking and computation of feature 

flow. Starting from (Moravec 1979) well known 
algorithms for corner detection (among many others) 
are given by (Harris CG 1988), the KLT-method by 
(Birchfield S 1994; Lucas BD, Kanade T 1981; 
Tomasi C, Kanade T 1991; Shi J, Tomasi C 1994) 
and by (Haralick RM, Shapiro LG 1993), all based 
on combinations of intensity gradients in more or 
less extended regions and in several directions. The 
basic ideas have been adapted and integrated into the 
present algorithm dubbed ‘UBM2’. 

Based on these references the following 
algorithm for ‘corner detection’ fitting into the mask 
scheme for planar approximation of the intensity 
function has been derived and proven efficient. The 
‘structural matrix’ 

  fr1N² +fr2N²  2·fr N·fcN             n11    n12    
 N =  =  (15) 

 2·frN·fcN       fc1N² +fc2N²             n12    n22  
 

has been defined with the terms from Eqs (3) and 
(4). With the equations mentioned the determinant 
of the matrix N is  

2
11 22 12 11 22

11 c1 c2 22 r1 r2 r1 r2 c1 c2

det N n n n 0.75 n n
0.5 (n f f n f f ) f f f f

= ⋅ − = ⋅ ⋅ −
⋅ ⋅ + ⋅ −

 (16) 

Haralick calls det N the ‘Beaudet measure of 
cornerness’, however, formed with a different term 
on the cross-diagonal 12 ri cin f f= Σ . With the 
quadratic enhancement term Q = (n11  +  n22) / 2 the 
two eigenvalues λ1 and λ2 of the structural matrix are 
obtained as  
 2

1,2 Q 1 1 det N Q⎡ ⎤λ = ± −⎢ ⎥⎣ ⎦
. (17) 

Defining λ2N = λ2 / λ1, Haralick’s measure of 
circularity q becomes 

 (18) 

It can thus be seen that the normalized second 
eigenvalue λ2N and circularity q are different 
expressions for the same property. In both 
parameters the absolute magnitude of the 
eigenvalues is lost. As threshold value for corner 
points a minimal circularity qmin is chosen as lower 
limit:  

. (19) 

traceN = λ1 + λ2 > traceNmin 

may be selected as additional threshold. In a post-
processing step, within a user-defined window D, 
only the local maximal value q* is selected as 
corner. For larger D the corners tend to move away 

m inq q>

2 2
1 2 2 N

1 2 2 N

4 q 1 = . 
(1 + )²

⎡ ⎤λ − λ λ
= − ⎢ ⎥λ + λ λ⎣ ⎦

column 89, mel-size 1 x 3

row number in image

similarly shaded image region
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Figure 9: Result from segmentation of a single 
vertical stripe in a highway scene (see image part on 
right-hand side) from (Hofmann 2004) 
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from the correct position. With the definitions taken, 
a double corner (like on a checker board, figure 3a) 
has q = 1; a single ideal corner (figure 3b) has q = 
0.75. For intensity distributions allowing good 
planar approximations, q goes towards 0. The 
threshold value qmin may be adapted from experience 
in the domain. Minimal circularity values for stable 
corners should be set around qmin ≈ 0.7. According to 
eq. (18) this yields λ2N values smaller than about 0.3. 
When too many corner candidates are found, it is 
possible to reduce their number not by lifting qmin 
but by adjusting the threshold value ‘traceNmin’ 
which limits the sum of the two eigenvalues. 
According to the main diagonal of eq. (15) this 
means prescribing a minimal value for the sum of 
the squares of all local gradients in the mask. This 
parameter depends on the absolute magnitude of the 
gradient components and has thus to be adapted to 
the actual situation at hand. It is interesting to note 
that the threshold ErrMax for planarity check (eq. 
13) has a similar effect as the boundary for the 
threshold value traceNmin on corners. 

Figure 10 shows corners (black crosses) found 
in nonplanarity regions (white bars) in vertical (left) 
and horizontal search (right) on the first pyramid 
level (mc = nc = 2 yielding a reduced image of about 
45,000 cells). Mask size with m = n = 2 thus was 4·4 
= 16 pixel. 2001 nonplanarity features (~ 4.4 % of 
number of cells) with interpolation errors larger than 
ErrMax = 5 % have been found in vertical search. 
From these, 108 locations (dark crosses) have been 
determined satisfying the corner conditions: 
circularity qmin = 0.7 and traceNmin = 0.2 (figure 10, 
left). The right-hand part of the figure shows result 
of horizontal search with the same parameters except 
traceNmin = 0.15 (reduced for increasing the number 
of accepted corners). 865 mask locations (~1.9 %) 
yield 40 corner candidates (dark crosses). By 
adjusting threshold levels, the number of corner 
features obtained can be modified according to the 
needs in actual applications. Combining corner  
features obtained with different cell- (mc, nc) and 
mel-sizes (m, n) yet has to be investigated; it is 
expected that this will contribute to achieving 
increased robustness. 

The results in row and column search differ 
mainly because stripes are shifted by half-stripe  
width n (here = 2) laterally, while in search direction 
masks are shifted by just one cell. 

 
 
 
 
 

_____________________________________________________ 
Acknowledgement: Numerical results are based on software 
derived from (Hofmann, 2004) 

9 CONCLUSIONS 

Checking for the goodness of planarity conditions 
when fitting local linear intensity models to image 
segments has led to the new ‘nonplanarity’-feature. 
In typical road scenes, only 1 to 5 % of all mask 
locations exceed threshold values of 3 to 10 % 
planarity error (residue values). This yields an 
efficient pre-selection for checking corner features. 
The gradient components between the mask 
elements are used in multiple ways to determine 
nonplanar intensity regions, corners, edges and 
segments with linear shading models. Merging of 
these features over neighboring stripes leads to 
larger 2-D features. Some applications to road 
scenes have shown the efficiency achievable. 
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